#define _GNU_SOURCE #include "utils.h" #include #include #include #ifdef HAVE_GETTIMEOFDAY #include #else #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_MMAN_H #include #endif #ifdef HAVE_FENV_H #include #endif #ifdef HAVE_LIBPNG #include #endif /* Random number generator state */ prng_t prng_state_data; prng_t *prng_state; /*----------------------------------------------------------------------------*\ * CRC-32 version 2.0.0 by Craig Bruce, 2006-04-29. * * This program generates the CRC-32 values for the files named in the * command-line arguments. These are the same CRC-32 values used by GZIP, * PKZIP, and ZMODEM. The Crc32_ComputeBuf () can also be detached and * used independently. * * THIS PROGRAM IS PUBLIC-DOMAIN SOFTWARE. * * Based on the byte-oriented implementation "File Verification Using CRC" * by Mark R. Nelson in Dr. Dobb's Journal, May 1992, pp. 64-67. * * v1.0.0: original release. * v1.0.1: fixed printf formats. * v1.0.2: fixed something else. * v1.0.3: replaced CRC constant table by generator function. * v1.0.4: reformatted code, made ANSI C. 1994-12-05. * v2.0.0: rewrote to use memory buffer & static table, 2006-04-29. \*----------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------*\ * NAME: * Crc32_ComputeBuf () - computes the CRC-32 value of a memory buffer * DESCRIPTION: * Computes or accumulates the CRC-32 value for a memory buffer. * The 'inCrc32' gives a previously accumulated CRC-32 value to allow * a CRC to be generated for multiple sequential buffer-fuls of data. * The 'inCrc32' for the first buffer must be zero. * ARGUMENTS: * inCrc32 - accumulated CRC-32 value, must be 0 on first call * buf - buffer to compute CRC-32 value for * bufLen - number of bytes in buffer * RETURNS: * crc32 - computed CRC-32 value * ERRORS: * (no errors are possible) \*----------------------------------------------------------------------------*/ uint32_t compute_crc32 (uint32_t in_crc32, const void *buf, size_t buf_len) { static const uint32_t crc_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; uint32_t crc32; unsigned char * byte_buf; size_t i; /* accumulate crc32 for buffer */ crc32 = in_crc32 ^ 0xFFFFFFFF; byte_buf = (unsigned char*) buf; for (i = 0; i < buf_len; i++) crc32 = (crc32 >> 8) ^ crc_table[(crc32 ^ byte_buf[i]) & 0xFF]; return (crc32 ^ 0xFFFFFFFF); } static uint32_t compute_crc32_for_image_internal (uint32_t crc32, pixman_image_t *img, pixman_bool_t remove_alpha, pixman_bool_t remove_rgb) { pixman_format_code_t fmt = pixman_image_get_format (img); uint32_t *data = pixman_image_get_data (img); int stride = pixman_image_get_stride (img); int height = pixman_image_get_height (img); uint32_t mask = 0xffffffff; int i; if (stride < 0) { data += (stride / 4) * (height - 1); stride = - stride; } /* mask unused 'x' part */ if (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt) && PIXMAN_FORMAT_DEPTH (fmt) != 0) { uint32_t m = (1 << PIXMAN_FORMAT_DEPTH (fmt)) - 1; if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA || PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA) { m <<= (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt)); } mask &= m; } /* mask alpha channel */ if (remove_alpha && PIXMAN_FORMAT_A (fmt)) { uint32_t m; if (PIXMAN_FORMAT_BPP (fmt) == 32) m = 0xffffffff; else m = (1 << PIXMAN_FORMAT_BPP (fmt)) - 1; m >>= PIXMAN_FORMAT_A (fmt); if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA || PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA || PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_A) { /* Alpha is at the bottom of the pixel */ m <<= PIXMAN_FORMAT_A (fmt); } mask &= m; } /* mask rgb channels */ if (remove_rgb && PIXMAN_FORMAT_RGB (fmt)) { uint32_t m = ((uint32_t)~0) >> (32 - PIXMAN_FORMAT_BPP (fmt)); uint32_t size = PIXMAN_FORMAT_R (fmt) + PIXMAN_FORMAT_G (fmt) + PIXMAN_FORMAT_B (fmt); m &= ~((1 << size) - 1); if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA || PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA) { /* RGB channels are at the top of the pixel */ m >>= size; } mask &= m; } for (i = 0; i * PIXMAN_FORMAT_BPP (fmt) < 32; i++) mask |= mask << (i * PIXMAN_FORMAT_BPP (fmt)); for (i = 0; i < stride * height / 4; i++) data[i] &= mask; /* swap endiannes in order to provide identical results on both big * and litte endian systems */ image_endian_swap (img); return compute_crc32 (crc32, data, stride * height); } uint32_t compute_crc32_for_image (uint32_t crc32, pixman_image_t *img) { if (img->common.alpha_map) { crc32 = compute_crc32_for_image_internal (crc32, img, TRUE, FALSE); crc32 = compute_crc32_for_image_internal ( crc32, (pixman_image_t *)img->common.alpha_map, FALSE, TRUE); } else { crc32 = compute_crc32_for_image_internal (crc32, img, FALSE, FALSE); } return crc32; } void print_image (pixman_image_t *image) { int i, j; int width, height, stride; pixman_format_code_t format; uint8_t *buffer; int s; width = pixman_image_get_width (image); height = pixman_image_get_height (image); stride = pixman_image_get_stride (image); format = pixman_image_get_format (image); buffer = (uint8_t *)pixman_image_get_data (image); s = (stride >= 0)? stride : - stride; printf ("---\n"); for (i = 0; i < height; i++) { for (j = 0; j < s; j++) { if (j == (width * PIXMAN_FORMAT_BPP (format) + 7) / 8) printf ("| "); printf ("%02X ", *((uint8_t *)buffer + i * stride + j)); } printf ("\n"); } printf ("---\n"); } /* perform endian conversion of pixel data */ void image_endian_swap (pixman_image_t *img) { int stride = pixman_image_get_stride (img); uint32_t *data = pixman_image_get_data (img); int height = pixman_image_get_height (img); int bpp = PIXMAN_FORMAT_BPP (pixman_image_get_format (img)); int i, j; /* swap bytes only on big endian systems */ if (is_little_endian()) return; if (bpp == 8) return; for (i = 0; i < height; i++) { uint8_t *line_data = (uint8_t *)data + stride * i; int s = (stride >= 0)? stride : - stride; switch (bpp) { case 1: for (j = 0; j < s; j++) { line_data[j] = ((line_data[j] & 0x80) >> 7) | ((line_data[j] & 0x40) >> 5) | ((line_data[j] & 0x20) >> 3) | ((line_data[j] & 0x10) >> 1) | ((line_data[j] & 0x08) << 1) | ((line_data[j] & 0x04) << 3) | ((line_data[j] & 0x02) << 5) | ((line_data[j] & 0x01) << 7); } break; case 4: for (j = 0; j < s; j++) { line_data[j] = (line_data[j] >> 4) | (line_data[j] << 4); } break; case 16: for (j = 0; j + 2 <= s; j += 2) { char t1 = line_data[j + 0]; char t2 = line_data[j + 1]; line_data[j + 1] = t1; line_data[j + 0] = t2; } break; case 24: for (j = 0; j + 3 <= s; j += 3) { char t1 = line_data[j + 0]; char t2 = line_data[j + 1]; char t3 = line_data[j + 2]; line_data[j + 2] = t1; line_data[j + 1] = t2; line_data[j + 0] = t3; } break; case 32: for (j = 0; j + 4 <= s; j += 4) { char t1 = line_data[j + 0]; char t2 = line_data[j + 1]; char t3 = line_data[j + 2]; char t4 = line_data[j + 3]; line_data[j + 3] = t1; line_data[j + 2] = t2; line_data[j + 1] = t3; line_data[j + 0] = t4; } break; default: assert (FALSE); break; } } } #define N_LEADING_PROTECTED 10 #define N_TRAILING_PROTECTED 10 typedef struct { void *addr; uint32_t len; uint8_t *trailing; int n_bytes; } info_t; #if defined(HAVE_MPROTECT) && defined(HAVE_GETPAGESIZE) && defined(HAVE_SYS_MMAN_H) && defined(HAVE_MMAP) /* This is apparently necessary on at least OS X */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif void * fence_malloc (int64_t len) { unsigned long page_size = getpagesize(); unsigned long page_mask = page_size - 1; uint32_t n_payload_bytes = (len + page_mask) & ~page_mask; uint32_t n_bytes = (page_size * (N_LEADING_PROTECTED + N_TRAILING_PROTECTED + 2) + n_payload_bytes) & ~page_mask; uint8_t *initial_page; uint8_t *leading_protected; uint8_t *trailing_protected; uint8_t *payload; uint8_t *addr; if (len < 0) abort(); addr = mmap (NULL, n_bytes, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { printf ("mmap failed on %lld %u\n", (long long int)len, n_bytes); return NULL; } initial_page = (uint8_t *)(((uintptr_t)addr + page_mask) & ~page_mask); leading_protected = initial_page + page_size; payload = leading_protected + N_LEADING_PROTECTED * page_size; trailing_protected = payload + n_payload_bytes; ((info_t *)initial_page)->addr = addr; ((info_t *)initial_page)->len = len; ((info_t *)initial_page)->trailing = trailing_protected; ((info_t *)initial_page)->n_bytes = n_bytes; if ((mprotect (leading_protected, N_LEADING_PROTECTED * page_size, PROT_NONE) == -1) || (mprotect (trailing_protected, N_TRAILING_PROTECTED * page_size, PROT_NONE) == -1)) { munmap (addr, n_bytes); return NULL; } return payload; } void fence_free (void *data) { uint32_t page_size = getpagesize(); uint8_t *payload = data; uint8_t *leading_protected = payload - N_LEADING_PROTECTED * page_size; uint8_t *initial_page = leading_protected - page_size; info_t *info = (info_t *)initial_page; munmap (info->addr, info->n_bytes); } #else void * fence_malloc (int64_t len) { return malloc (len); } void fence_free (void *data) { free (data); } #endif uint8_t * make_random_bytes (int n_bytes) { uint8_t *bytes = fence_malloc (n_bytes); if (!bytes) return NULL; prng_randmemset (bytes, n_bytes, 0); return bytes; } void a8r8g8b8_to_rgba_np (uint32_t *dst, uint32_t *src, int n_pixels) { uint8_t *dst8 = (uint8_t *)dst; int i; for (i = 0; i < n_pixels; ++i) { uint32_t p = src[i]; uint8_t a, r, g, b; a = (p & 0xff000000) >> 24; r = (p & 0x00ff0000) >> 16; g = (p & 0x0000ff00) >> 8; b = (p & 0x000000ff) >> 0; if (a != 0) { #define DIVIDE(c, a) \ do \ { \ int t = ((c) * 255) / a; \ (c) = t < 0? 0 : t > 255? 255 : t; \ } while (0) DIVIDE (r, a); DIVIDE (g, a); DIVIDE (b, a); } *dst8++ = r; *dst8++ = g; *dst8++ = b; *dst8++ = a; } } #ifdef HAVE_LIBPNG pixman_bool_t write_png (pixman_image_t *image, const char *filename) { int width = pixman_image_get_width (image); int height = pixman_image_get_height (image); int stride = width * 4; uint32_t *data = malloc (height * stride); pixman_image_t *copy; png_struct *write_struct; png_info *info_struct; pixman_bool_t result = FALSE; FILE *f = fopen (filename, "wb"); png_bytep *row_pointers; int i; if (!f) return FALSE; row_pointers = malloc (height * sizeof (png_bytep)); copy = pixman_image_create_bits ( PIXMAN_a8r8g8b8, width, height, data, stride); pixman_image_composite32 ( PIXMAN_OP_SRC, image, NULL, copy, 0, 0, 0, 0, 0, 0, width, height); a8r8g8b8_to_rgba_np (data, data, height * width); for (i = 0; i < height; ++i) row_pointers[i] = (png_bytep)(data + i * width); if (!(write_struct = png_create_write_struct ( PNG_LIBPNG_VER_STRING, NULL, NULL, NULL))) goto out1; if (!(info_struct = png_create_info_struct (write_struct))) goto out2; png_init_io (write_struct, f); png_set_IHDR (write_struct, info_struct, width, height, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); png_write_info (write_struct, info_struct); png_write_image (write_struct, row_pointers); png_write_end (write_struct, NULL); result = TRUE; out2: png_destroy_write_struct (&write_struct, &info_struct); out1: if (fclose (f) != 0) result = FALSE; pixman_image_unref (copy); free (row_pointers); free (data); return result; } #else /* no libpng */ pixman_bool_t write_png (pixman_image_t *image, const char *filename) { return FALSE; } #endif static void color8_to_color16 (uint32_t color8, pixman_color_t *color16) { color16->alpha = ((color8 & 0xff000000) >> 24); color16->red = ((color8 & 0x00ff0000) >> 16); color16->green = ((color8 & 0x0000ff00) >> 8); color16->blue = ((color8 & 0x000000ff) >> 0); color16->alpha |= color16->alpha << 8; color16->red |= color16->red << 8; color16->blue |= color16->blue << 8; color16->green |= color16->green << 8; } void draw_checkerboard (pixman_image_t *image, int check_size, uint32_t color1, uint32_t color2) { pixman_color_t check1, check2; pixman_image_t *c1, *c2; int n_checks_x, n_checks_y; int i, j; color8_to_color16 (color1, &check1); color8_to_color16 (color2, &check2); c1 = pixman_image_create_solid_fill (&check1); c2 = pixman_image_create_solid_fill (&check2); n_checks_x = ( pixman_image_get_width (image) + check_size - 1) / check_size; n_checks_y = ( pixman_image_get_height (image) + check_size - 1) / check_size; for (j = 0; j < n_checks_y; j++) { for (i = 0; i < n_checks_x; i++) { pixman_image_t *src; if (((i ^ j) & 1)) src = c1; else src = c2; pixman_image_composite32 (PIXMAN_OP_SRC, src, NULL, image, 0, 0, 0, 0, i * check_size, j * check_size, check_size, check_size); } } } static uint32_t call_test_function (uint32_t (*test_function)(int testnum, int verbose), int testnum, int verbose) { uint32_t retval; #if defined (__GNUC__) && defined (_WIN32) && (defined (__i386) || defined (__i386__)) __asm__ ( /* Deliberately avoid aligning the stack to 16 bytes */ "pushl %1\n\t" "pushl %2\n\t" "call *%3\n\t" "addl $8, %%esp\n\t" : "=a" (retval) : "r" (verbose), "r" (testnum), "r" (test_function) : "edx", "ecx"); /* caller save registers */ #else retval = test_function (testnum, verbose); #endif return retval; } /* * A function, which can be used as a core part of the test programs, * intended to detect various problems with the help of fuzzing input * to pixman API (according to some templates, aka "smart" fuzzing). * Some general information about such testing can be found here: * http://en.wikipedia.org/wiki/Fuzz_testing * * It may help detecting: * - crashes on bad handling of valid or reasonably invalid input to * pixman API. * - deviations from the behavior of older pixman releases. * - deviations from the behavior of the same pixman release, but * configured in a different way (for example with SIMD optimizations * disabled), or running on a different OS or hardware. * * The test is performed by calling a callback function a huge number * of times. The callback function is expected to run some snippet of * pixman code with pseudorandom variations to the data feeded to * pixman API. A result of running each callback function should be * some deterministic value which depends on test number (test number * can be used as a seed for PRNG). When 'verbose' argument is nonzero, * callback function is expected to print to stdout some information * about what it does. * * Return values from many small tests are accumulated together and * used as final checksum, which can be compared to some expected * value. Running the tests not individually, but in a batch helps * to reduce process start overhead and also allows to parallelize * testing and utilize multiple CPU cores. * * The resulting executable can be run without any arguments. In * this case it runs a batch of tests starting from 1 and up to * 'default_number_of_iterations'. The resulting checksum is * compared with 'expected_checksum' and FAIL or PASS verdict * depends on the result of this comparison. * * If the executable is run with 2 numbers provided as command line * arguments, they specify the starting and ending numbers for a test * batch. * * If the executable is run with only one number provided as a command * line argument, then this number is used to call the callback function * once, and also with verbose flag set. */ int fuzzer_test_main (const char *test_name, int default_number_of_iterations, uint32_t expected_checksum, uint32_t (*test_function)(int testnum, int verbose), int argc, const char *argv[]) { int i, n1 = 1, n2 = 0; uint32_t checksum = 0; int verbose = getenv ("VERBOSE") != NULL; if (argc >= 3) { n1 = atoi (argv[1]); n2 = atoi (argv[2]); if (n2 < n1) { printf ("invalid test range\n"); return 1; } } else if (argc >= 2) { n2 = atoi (argv[1]); checksum = call_test_function (test_function, n2, 1); printf ("%d: checksum=%08X\n", n2, checksum); return 0; } else { n1 = 1; n2 = default_number_of_iterations; } #ifdef USE_OPENMP #pragma omp parallel for reduction(+:checksum) default(none) \ shared(n1, n2, test_function, verbose) #endif for (i = n1; i <= n2; i++) { uint32_t crc = call_test_function (test_function, i, 0); if (verbose) printf ("%d: %08X\n", i, crc); checksum += crc; } if (n1 == 1 && n2 == default_number_of_iterations) { if (checksum == expected_checksum) { printf ("%s test passed (checksum=%08X)\n", test_name, checksum); } else { printf ("%s test failed! (checksum=%08X, expected %08X)\n", test_name, checksum, expected_checksum); return 1; } } else { printf ("%d-%d: checksum=%08X\n", n1, n2, checksum); } return 0; } /* Try to obtain current time in seconds */ double gettime (void) { #ifdef HAVE_GETTIMEOFDAY struct timeval tv; gettimeofday (&tv, NULL); return (double)((int64_t)tv.tv_sec * 1000000 + tv.tv_usec) / 1000000.; #else return (double)clock() / (double)CLOCKS_PER_SEC; #endif } uint32_t get_random_seed (void) { union { double d; uint32_t u32; } t; t.d = gettime(); prng_srand (t.u32); return prng_rand (); } #ifdef HAVE_SIGACTION #ifdef HAVE_ALARM static const char *global_msg; static void on_alarm (int signo) { printf ("%s\n", global_msg); exit (1); } #endif #endif void fail_after (int seconds, const char *msg) { #ifdef HAVE_SIGACTION #ifdef HAVE_ALARM struct sigaction action; global_msg = msg; memset (&action, 0, sizeof (action)); action.sa_handler = on_alarm; alarm (seconds); sigaction (SIGALRM, &action, NULL); #endif #endif } void enable_divbyzero_exceptions (void) { #ifdef HAVE_FENV_H #ifdef HAVE_FEENABLEEXCEPT feenableexcept (FE_DIVBYZERO); #endif #endif } void * aligned_malloc (size_t align, size_t size) { void *result; #ifdef HAVE_POSIX_MEMALIGN if (posix_memalign (&result, align, size) != 0) result = NULL; #else result = malloc (size); #endif return result; } #define CONVERT_15(c, is_rgb) \ (is_rgb? \ ((((c) >> 3) & 0x001f) | \ (((c) >> 6) & 0x03e0) | \ (((c) >> 9) & 0x7c00)) : \ (((((c) >> 16) & 0xff) * 153 + \ (((c) >> 8) & 0xff) * 301 + \ (((c) ) & 0xff) * 58) >> 2)) double convert_srgb_to_linear (double c) { if (c <= 0.04045) return c / 12.92; else return pow ((c + 0.055) / 1.055, 2.4); } double convert_linear_to_srgb (double c) { if (c <= 0.0031308) return c * 12.92; else return 1.055 * pow (c, 1.0/2.4) - 0.055; } void initialize_palette (pixman_indexed_t *palette, uint32_t depth, int is_rgb) { int i; uint32_t mask = (1 << depth) - 1; for (i = 0; i < 32768; ++i) palette->ent[i] = prng_rand() & mask; memset (palette->rgba, 0, sizeof (palette->rgba)); for (i = 0; i < mask + 1; ++i) { uint32_t rgba24; pixman_bool_t retry; uint32_t i15; /* We filled the rgb->index map with random numbers, but we * do need the ability to round trip, that is if some indexed * color expands to an argb24, then the 15 bit version of that * color must map back to the index. Anything else, we don't * care about too much. */ do { uint32_t old_idx; rgba24 = prng_rand(); i15 = CONVERT_15 (rgba24, is_rgb); old_idx = palette->ent[i15]; if (CONVERT_15 (palette->rgba[old_idx], is_rgb) == i15) retry = 1; else retry = 0; } while (retry); palette->rgba[i] = rgba24; palette->ent[i15] = i; } for (i = 0; i < mask + 1; ++i) { assert (palette->ent[CONVERT_15 (palette->rgba[i], is_rgb)] == i); } } const char * operator_name (pixman_op_t op) { switch (op) { case PIXMAN_OP_CLEAR: return "PIXMAN_OP_CLEAR"; case PIXMAN_OP_SRC: return "PIXMAN_OP_SRC"; case PIXMAN_OP_DST: return "PIXMAN_OP_DST"; case PIXMAN_OP_OVER: return "PIXMAN_OP_OVER"; case PIXMAN_OP_OVER_REVERSE: return "PIXMAN_OP_OVER_REVERSE"; case PIXMAN_OP_IN: return "PIXMAN_OP_IN"; case PIXMAN_OP_IN_REVERSE: return "PIXMAN_OP_IN_REVERSE"; case PIXMAN_OP_OUT: return "PIXMAN_OP_OUT"; case PIXMAN_OP_OUT_REVERSE: return "PIXMAN_OP_OUT_REVERSE"; case PIXMAN_OP_ATOP: return "PIXMAN_OP_ATOP"; case PIXMAN_OP_ATOP_REVERSE: return "PIXMAN_OP_ATOP_REVERSE"; case PIXMAN_OP_XOR: return "PIXMAN_OP_XOR"; case PIXMAN_OP_ADD: return "PIXMAN_OP_ADD"; case PIXMAN_OP_SATURATE: return "PIXMAN_OP_SATURATE"; case PIXMAN_OP_DISJOINT_CLEAR: return "PIXMAN_OP_DISJOINT_CLEAR"; case PIXMAN_OP_DISJOINT_SRC: return "PIXMAN_OP_DISJOINT_SRC"; case PIXMAN_OP_DISJOINT_DST: return "PIXMAN_OP_DISJOINT_DST"; case PIXMAN_OP_DISJOINT_OVER: return "PIXMAN_OP_DISJOINT_OVER"; case PIXMAN_OP_DISJOINT_OVER_REVERSE: return "PIXMAN_OP_DISJOINT_OVER_REVERSE"; case PIXMAN_OP_DISJOINT_IN: return "PIXMAN_OP_DISJOINT_IN"; case PIXMAN_OP_DISJOINT_IN_REVERSE: return "PIXMAN_OP_DISJOINT_IN_REVERSE"; case PIXMAN_OP_DISJOINT_OUT: return "PIXMAN_OP_DISJOINT_OUT"; case PIXMAN_OP_DISJOINT_OUT_REVERSE: return "PIXMAN_OP_DISJOINT_OUT_REVERSE"; case PIXMAN_OP_DISJOINT_ATOP: return "PIXMAN_OP_DISJOINT_ATOP"; case PIXMAN_OP_DISJOINT_ATOP_REVERSE: return "PIXMAN_OP_DISJOINT_ATOP_REVERSE"; case PIXMAN_OP_DISJOINT_XOR: return "PIXMAN_OP_DISJOINT_XOR"; case PIXMAN_OP_CONJOINT_CLEAR: return "PIXMAN_OP_CONJOINT_CLEAR"; case PIXMAN_OP_CONJOINT_SRC: return "PIXMAN_OP_CONJOINT_SRC"; case PIXMAN_OP_CONJOINT_DST: return "PIXMAN_OP_CONJOINT_DST"; case PIXMAN_OP_CONJOINT_OVER: return "PIXMAN_OP_CONJOINT_OVER"; case PIXMAN_OP_CONJOINT_OVER_REVERSE: return "PIXMAN_OP_CONJOINT_OVER_REVERSE"; case PIXMAN_OP_CONJOINT_IN: return "PIXMAN_OP_CONJOINT_IN"; case PIXMAN_OP_CONJOINT_IN_REVERSE: return "PIXMAN_OP_CONJOINT_IN_REVERSE"; case PIXMAN_OP_CONJOINT_OUT: return "PIXMAN_OP_CONJOINT_OUT"; case PIXMAN_OP_CONJOINT_OUT_REVERSE: return "PIXMAN_OP_CONJOINT_OUT_REVERSE"; case PIXMAN_OP_CONJOINT_ATOP: return "PIXMAN_OP_CONJOINT_ATOP"; case PIXMAN_OP_CONJOINT_ATOP_REVERSE: return "PIXMAN_OP_CONJOINT_ATOP_REVERSE"; case PIXMAN_OP_CONJOINT_XOR: return "PIXMAN_OP_CONJOINT_XOR"; case PIXMAN_OP_MULTIPLY: return "PIXMAN_OP_MULTIPLY"; case PIXMAN_OP_SCREEN: return "PIXMAN_OP_SCREEN"; case PIXMAN_OP_OVERLAY: return "PIXMAN_OP_OVERLAY"; case PIXMAN_OP_DARKEN: return "PIXMAN_OP_DARKEN"; case PIXMAN_OP_LIGHTEN: return "PIXMAN_OP_LIGHTEN"; case PIXMAN_OP_COLOR_DODGE: return "PIXMAN_OP_COLOR_DODGE"; case PIXMAN_OP_COLOR_BURN: return "PIXMAN_OP_COLOR_BURN"; case PIXMAN_OP_HARD_LIGHT: return "PIXMAN_OP_HARD_LIGHT"; case PIXMAN_OP_SOFT_LIGHT: return "PIXMAN_OP_SOFT_LIGHT"; case PIXMAN_OP_DIFFERENCE: return "PIXMAN_OP_DIFFERENCE"; case PIXMAN_OP_EXCLUSION: return "PIXMAN_OP_EXCLUSION"; case PIXMAN_OP_HSL_HUE: return "PIXMAN_OP_HSL_HUE"; case PIXMAN_OP_HSL_SATURATION: return "PIXMAN_OP_HSL_SATURATION"; case PIXMAN_OP_HSL_COLOR: return "PIXMAN_OP_HSL_COLOR"; case PIXMAN_OP_HSL_LUMINOSITY: return "PIXMAN_OP_HSL_LUMINOSITY"; case PIXMAN_OP_NONE: return ""; }; return ""; } const char * format_name (pixman_format_code_t format) { switch (format) { /* 32bpp formats */ case PIXMAN_a8r8g8b8: return "a8r8g8b8"; case PIXMAN_x8r8g8b8: return "x8r8g8b8"; case PIXMAN_a8b8g8r8: return "a8b8g8r8"; case PIXMAN_x8b8g8r8: return "x8b8g8r8"; case PIXMAN_b8g8r8a8: return "b8g8r8a8"; case PIXMAN_b8g8r8x8: return "b8g8r8x8"; case PIXMAN_r8g8b8a8: return "r8g8b8a8"; case PIXMAN_r8g8b8x8: return "r8g8b8x8"; case PIXMAN_x14r6g6b6: return "x14r6g6b6"; case PIXMAN_x2r10g10b10: return "x2r10g10b10"; case PIXMAN_a2r10g10b10: return "a2r10g10b10"; case PIXMAN_x2b10g10r10: return "x2b10g10r10"; case PIXMAN_a2b10g10r10: return "a2b10g10r10"; /* sRGB formats */ case PIXMAN_a8r8g8b8_sRGB: return "a8r8g8b8_sRGB"; /* 24bpp formats */ case PIXMAN_r8g8b8: return "r8g8b8"; case PIXMAN_b8g8r8: return "b8g8r8"; /* 16bpp formats */ case PIXMAN_r5g6b5: return "r5g6b5"; case PIXMAN_b5g6r5: return "b5g6r5"; case PIXMAN_a1r5g5b5: return "a1r5g5b5"; case PIXMAN_x1r5g5b5: return "x1r5g5b5"; case PIXMAN_a1b5g5r5: return "a1b5g5r5"; case PIXMAN_x1b5g5r5: return "x1b5g5r5"; case PIXMAN_a4r4g4b4: return "a4r4g4b4"; case PIXMAN_x4r4g4b4: return "x4r4g4b4"; case PIXMAN_a4b4g4r4: return "a4b4g4r4"; case PIXMAN_x4b4g4r4: return "x4b4g4r4"; /* 8bpp formats */ case PIXMAN_a8: return "a8"; case PIXMAN_r3g3b2: return "r3g3b2"; case PIXMAN_b2g3r3: return "b2g3r3"; case PIXMAN_a2r2g2b2: return "a2r2g2b2"; case PIXMAN_a2b2g2r2: return "a2b2g2r2"; #if 0 case PIXMAN_x4c4: return "x4c4"; case PIXMAN_g8: return "g8"; #endif case PIXMAN_c8: return "x4c4 / c8"; case PIXMAN_x4g4: return "x4g4 / g8"; case PIXMAN_x4a4: return "x4a4"; /* 4bpp formats */ case PIXMAN_a4: return "a4"; case PIXMAN_r1g2b1: return "r1g2b1"; case PIXMAN_b1g2r1: return "b1g2r1"; case PIXMAN_a1r1g1b1: return "a1r1g1b1"; case PIXMAN_a1b1g1r1: return "a1b1g1r1"; case PIXMAN_c4: return "c4"; case PIXMAN_g4: return "g4"; /* 1bpp formats */ case PIXMAN_a1: return "a1"; case PIXMAN_g1: return "g1"; /* YUV formats */ case PIXMAN_yuy2: return "yuy2"; case PIXMAN_yv12: return "yv12"; }; /* Fake formats. * * This is separate switch to prevent GCC from complaining * that the values are not in the pixman_format_code_t enum. */ switch ((uint32_t)format) { case PIXMAN_null: return "null"; case PIXMAN_solid: return "solid"; case PIXMAN_pixbuf: return "pixbuf"; case PIXMAN_rpixbuf: return "rpixbuf"; case PIXMAN_unknown: return "unknown"; }; return ""; }; static double calc_op (pixman_op_t op, double src, double dst, double srca, double dsta) { #define mult_chan(src, dst, Fa, Fb) MIN ((src) * (Fa) + (dst) * (Fb), 1.0) double Fa, Fb; switch (op) { case PIXMAN_OP_CLEAR: case PIXMAN_OP_DISJOINT_CLEAR: case PIXMAN_OP_CONJOINT_CLEAR: return mult_chan (src, dst, 0.0, 0.0); case PIXMAN_OP_SRC: case PIXMAN_OP_DISJOINT_SRC: case PIXMAN_OP_CONJOINT_SRC: return mult_chan (src, dst, 1.0, 0.0); case PIXMAN_OP_DST: case PIXMAN_OP_DISJOINT_DST: case PIXMAN_OP_CONJOINT_DST: return mult_chan (src, dst, 0.0, 1.0); case PIXMAN_OP_OVER: return mult_chan (src, dst, 1.0, 1.0 - srca); case PIXMAN_OP_OVER_REVERSE: return mult_chan (src, dst, 1.0 - dsta, 1.0); case PIXMAN_OP_IN: return mult_chan (src, dst, dsta, 0.0); case PIXMAN_OP_IN_REVERSE: return mult_chan (src, dst, 0.0, srca); case PIXMAN_OP_OUT: return mult_chan (src, dst, 1.0 - dsta, 0.0); case PIXMAN_OP_OUT_REVERSE: return mult_chan (src, dst, 0.0, 1.0 - srca); case PIXMAN_OP_ATOP: return mult_chan (src, dst, dsta, 1.0 - srca); case PIXMAN_OP_ATOP_REVERSE: return mult_chan (src, dst, 1.0 - dsta, srca); case PIXMAN_OP_XOR: return mult_chan (src, dst, 1.0 - dsta, 1.0 - srca); case PIXMAN_OP_ADD: return mult_chan (src, dst, 1.0, 1.0); case PIXMAN_OP_SATURATE: case PIXMAN_OP_DISJOINT_OVER_REVERSE: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 1.0); case PIXMAN_OP_DISJOINT_OVER: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, 1.0, Fb); case PIXMAN_OP_DISJOINT_IN: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_DISJOINT_IN_REVERSE: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_DISJOINT_OUT: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_DISJOINT_OUT_REVERSE: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_DISJOINT_ATOP: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_DISJOINT_ATOP_REVERSE: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_DISJOINT_XOR: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, (1.0 - dsta) / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, (1.0 - srca) / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_OVER: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, 1.0, Fb); case PIXMAN_OP_CONJOINT_OVER_REVERSE: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); return mult_chan (src, dst, Fa, 1.0); case PIXMAN_OP_CONJOINT_IN: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, dsta / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_CONJOINT_IN_REVERSE: if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, srca / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_CONJOINT_OUT: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); return mult_chan (src, dst, Fa, 0.0); case PIXMAN_OP_CONJOINT_OUT_REVERSE: if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, 0.0, Fb); case PIXMAN_OP_CONJOINT_ATOP: if (srca == 0.0) Fa = 1.0; else Fa = MIN (1.0, dsta / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_ATOP_REVERSE: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); if (dsta == 0.0) Fb = 1.0; else Fb = MIN (1.0, srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_CONJOINT_XOR: if (srca == 0.0) Fa = 0.0; else Fa = MAX (0.0, 1.0 - dsta / srca); if (dsta == 0.0) Fb = 0.0; else Fb = MAX (0.0, 1.0 - srca / dsta); return mult_chan (src, dst, Fa, Fb); case PIXMAN_OP_MULTIPLY: case PIXMAN_OP_SCREEN: case PIXMAN_OP_OVERLAY: case PIXMAN_OP_DARKEN: case PIXMAN_OP_LIGHTEN: case PIXMAN_OP_COLOR_DODGE: case PIXMAN_OP_COLOR_BURN: case PIXMAN_OP_HARD_LIGHT: case PIXMAN_OP_SOFT_LIGHT: case PIXMAN_OP_DIFFERENCE: case PIXMAN_OP_EXCLUSION: case PIXMAN_OP_HSL_HUE: case PIXMAN_OP_HSL_SATURATION: case PIXMAN_OP_HSL_COLOR: case PIXMAN_OP_HSL_LUMINOSITY: default: abort(); return 0; /* silence MSVC */ } #undef mult_chan } void do_composite (pixman_op_t op, const color_t *src, const color_t *mask, const color_t *dst, color_t *result, pixman_bool_t component_alpha) { color_t srcval, srcalpha; if (mask == NULL) { srcval = *src; srcalpha.r = src->a; srcalpha.g = src->a; srcalpha.b = src->a; srcalpha.a = src->a; } else if (component_alpha) { srcval.r = src->r * mask->r; srcval.g = src->g * mask->g; srcval.b = src->b * mask->b; srcval.a = src->a * mask->a; srcalpha.r = src->a * mask->r; srcalpha.g = src->a * mask->g; srcalpha.b = src->a * mask->b; srcalpha.a = src->a * mask->a; } else { srcval.r = src->r * mask->a; srcval.g = src->g * mask->a; srcval.b = src->b * mask->a; srcval.a = src->a * mask->a; srcalpha.r = src->a * mask->a; srcalpha.g = src->a * mask->a; srcalpha.b = src->a * mask->a; srcalpha.a = src->a * mask->a; } result->r = calc_op (op, srcval.r, dst->r, srcalpha.r, dst->a); result->g = calc_op (op, srcval.g, dst->g, srcalpha.g, dst->a); result->b = calc_op (op, srcval.b, dst->b, srcalpha.b, dst->a); result->a = calc_op (op, srcval.a, dst->a, srcalpha.a, dst->a); } static double round_channel (double p, int m) { int t; double r; t = p * ((1 << m)); t -= t >> m; r = t / (double)((1 << m) - 1); return r; } void round_color (pixman_format_code_t format, color_t *color) { if (PIXMAN_FORMAT_R (format) == 0) { color->r = 0.0; color->g = 0.0; color->b = 0.0; } else { color->r = round_channel (color->r, PIXMAN_FORMAT_R (format)); color->g = round_channel (color->g, PIXMAN_FORMAT_G (format)); color->b = round_channel (color->b, PIXMAN_FORMAT_B (format)); } if (PIXMAN_FORMAT_A (format) == 0) color->a = 1; else color->a = round_channel (color->a, PIXMAN_FORMAT_A (format)); } /* Check whether @pixel is a valid quantization of the a, r, g, b * parameters. Some slack is permitted. */ void pixel_checker_init (pixel_checker_t *checker, pixman_format_code_t format) { assert (PIXMAN_FORMAT_VIS (format)); checker->format = format; switch (PIXMAN_FORMAT_TYPE (format)) { case PIXMAN_TYPE_A: checker->bs = 0; checker->gs = 0; checker->rs = 0; checker->as = 0; break; case PIXMAN_TYPE_ARGB: case PIXMAN_TYPE_ARGB_SRGB: checker->bs = 0; checker->gs = checker->bs + PIXMAN_FORMAT_B (format); checker->rs = checker->gs + PIXMAN_FORMAT_G (format); checker->as = checker->rs + PIXMAN_FORMAT_R (format); break; case PIXMAN_TYPE_ABGR: checker->rs = 0; checker->gs = checker->rs + PIXMAN_FORMAT_R (format); checker->bs = checker->gs + PIXMAN_FORMAT_G (format); checker->as = checker->bs + PIXMAN_FORMAT_B (format); break; case PIXMAN_TYPE_BGRA: /* With BGRA formats we start counting at the high end of the pixel */ checker->bs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_B (format); checker->gs = checker->bs - PIXMAN_FORMAT_B (format); checker->rs = checker->gs - PIXMAN_FORMAT_G (format); checker->as = checker->rs - PIXMAN_FORMAT_R (format); break; case PIXMAN_TYPE_RGBA: /* With BGRA formats we start counting at the high end of the pixel */ checker->rs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_R (format); checker->gs = checker->rs - PIXMAN_FORMAT_R (format); checker->bs = checker->gs - PIXMAN_FORMAT_G (format); checker->as = checker->bs - PIXMAN_FORMAT_B (format); break; default: assert (0); break; } checker->am = ((1 << PIXMAN_FORMAT_A (format)) - 1) << checker->as; checker->rm = ((1 << PIXMAN_FORMAT_R (format)) - 1) << checker->rs; checker->gm = ((1 << PIXMAN_FORMAT_G (format)) - 1) << checker->gs; checker->bm = ((1 << PIXMAN_FORMAT_B (format)) - 1) << checker->bs; checker->aw = PIXMAN_FORMAT_A (format); checker->rw = PIXMAN_FORMAT_R (format); checker->gw = PIXMAN_FORMAT_G (format); checker->bw = PIXMAN_FORMAT_B (format); } void pixel_checker_split_pixel (const pixel_checker_t *checker, uint32_t pixel, int *a, int *r, int *g, int *b) { *a = (pixel & checker->am) >> checker->as; *r = (pixel & checker->rm) >> checker->rs; *g = (pixel & checker->gm) >> checker->gs; *b = (pixel & checker->bm) >> checker->bs; } void pixel_checker_get_masks (const pixel_checker_t *checker, uint32_t *am, uint32_t *rm, uint32_t *gm, uint32_t *bm) { if (am) *am = checker->am; if (rm) *rm = checker->rm; if (gm) *gm = checker->gm; if (bm) *bm = checker->bm; } void pixel_checker_convert_pixel_to_color (const pixel_checker_t *checker, uint32_t pixel, color_t *color) { int a, r, g, b; pixel_checker_split_pixel (checker, pixel, &a, &r, &g, &b); if (checker->am == 0) color->a = 1.0; else color->a = a / (double)(checker->am >> checker->as); if (checker->rm == 0) color->r = 0.0; else color->r = r / (double)(checker->rm >> checker->rs); if (checker->gm == 0) color->g = 0.0; else color->g = g / (double)(checker->gm >> checker->gs); if (checker->bm == 0) color->b = 0.0; else color->b = b / (double)(checker->bm >> checker->bs); if (PIXMAN_FORMAT_TYPE (checker->format) == PIXMAN_TYPE_ARGB_SRGB) { color->r = convert_srgb_to_linear (color->r); color->g = convert_srgb_to_linear (color->g); color->b = convert_srgb_to_linear (color->b); } } static int32_t convert (double v, uint32_t width, uint32_t mask, uint32_t shift, double def) { int32_t r; if (!mask) v = def; r = (v * ((mask >> shift) + 1)); r -= r >> width; return r; } static void get_limits (const pixel_checker_t *checker, double limit, color_t *color, int *ao, int *ro, int *go, int *bo) { color_t tmp; if (PIXMAN_FORMAT_TYPE (checker->format) == PIXMAN_TYPE_ARGB_SRGB) { tmp.a = color->a; tmp.r = convert_linear_to_srgb (color->r); tmp.g = convert_linear_to_srgb (color->g); tmp.b = convert_linear_to_srgb (color->b); color = &tmp; } *ao = convert (color->a + limit, checker->aw, checker->am, checker->as, 1.0); *ro = convert (color->r + limit, checker->rw, checker->rm, checker->rs, 0.0); *go = convert (color->g + limit, checker->gw, checker->gm, checker->gs, 0.0); *bo = convert (color->b + limit, checker->bw, checker->bm, checker->bs, 0.0); } /* The acceptable deviation in units of [0.0, 1.0] */ #define DEVIATION (0.0064) void pixel_checker_get_max (const pixel_checker_t *checker, color_t *color, int *am, int *rm, int *gm, int *bm) { get_limits (checker, DEVIATION, color, am, rm, gm, bm); } void pixel_checker_get_min (const pixel_checker_t *checker, color_t *color, int *am, int *rm, int *gm, int *bm) { get_limits (checker, - DEVIATION, color, am, rm, gm, bm); } pixman_bool_t pixel_checker_check (const pixel_checker_t *checker, uint32_t pixel, color_t *color) { int32_t a_lo, a_hi, r_lo, r_hi, g_lo, g_hi, b_lo, b_hi; int32_t ai, ri, gi, bi; pixman_bool_t result; pixel_checker_get_min (checker, color, &a_lo, &r_lo, &g_lo, &b_lo); pixel_checker_get_max (checker, color, &a_hi, &r_hi, &g_hi, &b_hi); pixel_checker_split_pixel (checker, pixel, &ai, &ri, &gi, &bi); result = a_lo <= ai && ai <= a_hi && r_lo <= ri && ri <= r_hi && g_lo <= gi && gi <= g_hi && b_lo <= bi && bi <= b_hi; return result; }