/* * i.MX Fast Ethernet Controller emulation. * * Copyright (c) 2013 Jean-Christophe Dubois. * * Based on Coldfire Fast Ethernet Controller emulation. * * Copyright (c) 2007 CodeSourcery. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/net/imx_fec.h" #include "sysemu/dma.h" /* For crc32 */ #include #ifndef DEBUG_IMX_FEC #define DEBUG_IMX_FEC 0 #endif #define FEC_PRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_FEC) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \ __func__, ##args); \ } \ } while (0) #ifndef DEBUG_IMX_PHY #define DEBUG_IMX_PHY 0 #endif #define PHY_PRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_PHY) { \ fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \ __func__, ##args); \ } \ } while (0) static const VMStateDescription vmstate_imx_fec = { .name = TYPE_IMX_FEC, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(irq_state, IMXFECState), VMSTATE_UINT32(eir, IMXFECState), VMSTATE_UINT32(eimr, IMXFECState), VMSTATE_UINT32(rx_enabled, IMXFECState), VMSTATE_UINT32(rx_descriptor, IMXFECState), VMSTATE_UINT32(tx_descriptor, IMXFECState), VMSTATE_UINT32(ecr, IMXFECState), VMSTATE_UINT32(mmfr, IMXFECState), VMSTATE_UINT32(mscr, IMXFECState), VMSTATE_UINT32(mibc, IMXFECState), VMSTATE_UINT32(rcr, IMXFECState), VMSTATE_UINT32(tcr, IMXFECState), VMSTATE_UINT32(tfwr, IMXFECState), VMSTATE_UINT32(frsr, IMXFECState), VMSTATE_UINT32(erdsr, IMXFECState), VMSTATE_UINT32(etdsr, IMXFECState), VMSTATE_UINT32(emrbr, IMXFECState), VMSTATE_UINT32(miigsk_cfgr, IMXFECState), VMSTATE_UINT32(miigsk_enr, IMXFECState), VMSTATE_UINT32(phy_status, IMXFECState), VMSTATE_UINT32(phy_control, IMXFECState), VMSTATE_UINT32(phy_advertise, IMXFECState), VMSTATE_UINT32(phy_int, IMXFECState), VMSTATE_UINT32(phy_int_mask, IMXFECState), VMSTATE_END_OF_LIST() } }; #define PHY_INT_ENERGYON (1 << 7) #define PHY_INT_AUTONEG_COMPLETE (1 << 6) #define PHY_INT_FAULT (1 << 5) #define PHY_INT_DOWN (1 << 4) #define PHY_INT_AUTONEG_LP (1 << 3) #define PHY_INT_PARFAULT (1 << 2) #define PHY_INT_AUTONEG_PAGE (1 << 1) static void imx_fec_update(IMXFECState *s); /* * The MII phy could raise a GPIO to the processor which in turn * could be handled as an interrpt by the OS. * For now we don't handle any GPIO/interrupt line, so the OS will * have to poll for the PHY status. */ static void phy_update_irq(IMXFECState *s) { imx_fec_update(s); } static void phy_update_link(IMXFECState *s) { /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { PHY_PRINTF("link is down\n"); s->phy_status &= ~0x0024; s->phy_int |= PHY_INT_DOWN; } else { PHY_PRINTF("link is up\n"); s->phy_status |= 0x0024; s->phy_int |= PHY_INT_ENERGYON; s->phy_int |= PHY_INT_AUTONEG_COMPLETE; } phy_update_irq(s); } static void imx_fec_set_link(NetClientState *nc) { phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc))); } static void phy_reset(IMXFECState *s) { s->phy_status = 0x7809; s->phy_control = 0x3000; s->phy_advertise = 0x01e1; s->phy_int_mask = 0; s->phy_int = 0; phy_update_link(s); } static uint32_t do_phy_read(IMXFECState *s, int reg) { uint32_t val; if (reg > 31) { /* we only advertise one phy */ return 0; } switch (reg) { case 0: /* Basic Control */ val = s->phy_control; break; case 1: /* Basic Status */ val = s->phy_status; break; case 2: /* ID1 */ val = 0x0007; break; case 3: /* ID2 */ val = 0xc0d1; break; case 4: /* Auto-neg advertisement */ val = s->phy_advertise; break; case 5: /* Auto-neg Link Partner Ability */ val = 0x0f71; break; case 6: /* Auto-neg Expansion */ val = 1; break; case 29: /* Interrupt source. */ val = s->phy_int; s->phy_int = 0; phy_update_irq(s); break; case 30: /* Interrupt mask */ val = s->phy_int_mask; break; case 17: case 18: case 27: case 31: qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n", TYPE_IMX_FEC, __func__, reg); val = 0; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", TYPE_IMX_FEC, __func__, reg); val = 0; break; } PHY_PRINTF("read 0x%04x @ %d\n", val, reg); return val; } static void do_phy_write(IMXFECState *s, int reg, uint32_t val) { PHY_PRINTF("write 0x%04x @ %d\n", val, reg); if (reg > 31) { /* we only advertise one phy */ return; } switch (reg) { case 0: /* Basic Control */ if (val & 0x8000) { phy_reset(s); } else { s->phy_control = val & 0x7980; /* Complete autonegotiation immediately. */ if (val & 0x1000) { s->phy_status |= 0x0020; } } break; case 4: /* Auto-neg advertisement */ s->phy_advertise = (val & 0x2d7f) | 0x80; break; case 30: /* Interrupt mask */ s->phy_int_mask = val & 0xff; phy_update_irq(s); break; case 17: case 18: case 27: case 31: qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n", TYPE_IMX_FEC, __func__, reg); break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", TYPE_IMX_FEC, __func__, reg); break; } } static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr) { dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr) { dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_fec_update(IMXFECState *s) { uint32_t active; uint32_t changed; active = s->eir & s->eimr; changed = active ^ s->irq_state; if (changed) { qemu_set_irq(s->irq, active); } s->irq_state = active; } static void imx_fec_do_tx(IMXFECState *s) { int frame_size = 0; uint8_t frame[FEC_MAX_FRAME_SIZE]; uint8_t *ptr = frame; uint32_t addr = s->tx_descriptor; while (1) { IMXFECBufDesc bd; int len; imx_fec_read_bd(&bd, addr); FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n", addr, bd.flags, bd.length, bd.data); if ((bd.flags & FEC_BD_R) == 0) { /* Run out of descriptors to transmit. */ break; } len = bd.length; if (frame_size + len > FEC_MAX_FRAME_SIZE) { len = FEC_MAX_FRAME_SIZE - frame_size; s->eir |= FEC_INT_BABT; } dma_memory_read(&address_space_memory, bd.data, ptr, len); ptr += len; frame_size += len; if (bd.flags & FEC_BD_L) { /* Last buffer in frame. */ qemu_send_packet(qemu_get_queue(s->nic), frame, len); ptr = frame; frame_size = 0; s->eir |= FEC_INT_TXF; } s->eir |= FEC_INT_TXB; bd.flags &= ~FEC_BD_R; /* Write back the modified descriptor. */ imx_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & FEC_BD_W) != 0) { addr = s->etdsr; } else { addr += 8; } } s->tx_descriptor = addr; imx_fec_update(s); } static void imx_fec_enable_rx(IMXFECState *s) { IMXFECBufDesc bd; uint32_t tmp; imx_fec_read_bd(&bd, s->rx_descriptor); tmp = ((bd.flags & FEC_BD_E) != 0); if (!tmp) { FEC_PRINTF("RX buffer full\n"); } else if (!s->rx_enabled) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } s->rx_enabled = tmp; } static void imx_fec_reset(DeviceState *d) { IMXFECState *s = IMX_FEC(d); /* Reset the FEC */ s->eir = 0; s->eimr = 0; s->rx_enabled = 0; s->ecr = 0; s->mscr = 0; s->mibc = 0xc0000000; s->rcr = 0x05ee0001; s->tcr = 0; s->tfwr = 0; s->frsr = 0x500; s->miigsk_cfgr = 0; s->miigsk_enr = 0x6; /* We also reset the PHY */ phy_reset(s); } static uint64_t imx_fec_read(void *opaque, hwaddr addr, unsigned size) { IMXFECState *s = IMX_FEC(opaque); FEC_PRINTF("reading from @ 0x%" HWADDR_PRIx "\n", addr); switch (addr & 0x3ff) { case 0x004: return s->eir; case 0x008: return s->eimr; case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */ case 0x014: return 0; /* TDAR */ case 0x024: return s->ecr; case 0x040: return s->mmfr; case 0x044: return s->mscr; case 0x064: return s->mibc; /* MIBC */ case 0x084: return s->rcr; case 0x0c4: return s->tcr; case 0x0e4: /* PALR */ return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16) | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3]; break; case 0x0e8: /* PAUR */ return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808; case 0x0ec: return 0x10000; /* OPD */ case 0x118: return 0; case 0x11c: return 0; case 0x120: return 0; case 0x124: return 0; case 0x144: return s->tfwr; case 0x14c: return 0x600; case 0x150: return s->frsr; case 0x180: return s->erdsr; case 0x184: return s->etdsr; case 0x188: return s->emrbr; case 0x300: return s->miigsk_cfgr; case 0x308: return s->miigsk_enr; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_FEC, __func__, addr); return 0; } } static void imx_fec_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { IMXFECState *s = IMX_FEC(opaque); FEC_PRINTF("writing 0x%08x @ 0x%" HWADDR_PRIx "\n", (int)value, addr); switch (addr & 0x3ff) { case 0x004: /* EIR */ s->eir &= ~value; break; case 0x008: /* EIMR */ s->eimr = value; break; case 0x010: /* RDAR */ if ((s->ecr & FEC_EN) && !s->rx_enabled) { imx_fec_enable_rx(s); } break; case 0x014: /* TDAR */ if (s->ecr & FEC_EN) { imx_fec_do_tx(s); } break; case 0x024: /* ECR */ s->ecr = value; if (value & FEC_RESET) { imx_fec_reset(DEVICE(s)); } if ((s->ecr & FEC_EN) == 0) { s->rx_enabled = 0; } break; case 0x040: /* MMFR */ /* store the value */ s->mmfr = value; if (extract32(value, 28, 1)) { do_phy_write(s, extract32(value, 18, 9), extract32(value, 0, 16)); } else { s->mmfr = do_phy_read(s, extract32(value, 18, 9)); } /* raise the interrupt as the PHY operation is done */ s->eir |= FEC_INT_MII; break; case 0x044: /* MSCR */ s->mscr = value & 0xfe; break; case 0x064: /* MIBC */ /* TODO: Implement MIB. */ s->mibc = (value & 0x80000000) ? 0xc0000000 : 0; break; case 0x084: /* RCR */ s->rcr = value & 0x07ff003f; /* TODO: Implement LOOP mode. */ break; case 0x0c4: /* TCR */ /* We transmit immediately, so raise GRA immediately. */ s->tcr = value; if (value & 1) { s->eir |= FEC_INT_GRA; } break; case 0x0e4: /* PALR */ s->conf.macaddr.a[0] = value >> 24; s->conf.macaddr.a[1] = value >> 16; s->conf.macaddr.a[2] = value >> 8; s->conf.macaddr.a[3] = value; break; case 0x0e8: /* PAUR */ s->conf.macaddr.a[4] = value >> 24; s->conf.macaddr.a[5] = value >> 16; break; case 0x0ec: /* OPDR */ break; case 0x118: /* IAUR */ case 0x11c: /* IALR */ case 0x120: /* GAUR */ case 0x124: /* GALR */ /* TODO: implement MAC hash filtering. */ break; case 0x144: /* TFWR */ s->tfwr = value & 3; break; case 0x14c: /* FRBR */ /* FRBR writes ignored. */ break; case 0x150: /* FRSR */ s->frsr = (value & 0x3fc) | 0x400; break; case 0x180: /* ERDSR */ s->erdsr = value & ~3; s->rx_descriptor = s->erdsr; break; case 0x184: /* ETDSR */ s->etdsr = value & ~3; s->tx_descriptor = s->etdsr; break; case 0x188: /* EMRBR */ s->emrbr = value & 0x7f0; break; case 0x300: /* MIIGSK_CFGR */ s->miigsk_cfgr = value & 0x53; break; case 0x308: /* MIIGSK_ENR */ s->miigsk_enr = (value & 0x2) ? 0x6 : 0; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_FEC, __func__, addr); break; } imx_fec_update(s); } static int imx_fec_can_receive(NetClientState *nc) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); return s->rx_enabled; } static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf, size_t len) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); IMXFECBufDesc bd; uint32_t flags = 0; uint32_t addr; uint32_t crc; uint32_t buf_addr; uint8_t *crc_ptr; unsigned int buf_len; size_t size = len; FEC_PRINTF("len %d\n", (int)size); if (!s->rx_enabled) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", TYPE_IMX_FEC, __func__); return 0; } /* 4 bytes for the CRC. */ size += 4; crc = cpu_to_be32(crc32(~0, buf, size)); crc_ptr = (uint8_t *) &crc; /* Huge frames are truncted. */ if (size > FEC_MAX_FRAME_SIZE) { size = FEC_MAX_FRAME_SIZE; flags |= FEC_BD_TR | FEC_BD_LG; } /* Frames larger than the user limit just set error flags. */ if (size > (s->rcr >> 16)) { flags |= FEC_BD_LG; } addr = s->rx_descriptor; while (size > 0) { imx_fec_read_bd(&bd, addr); if ((bd.flags & FEC_BD_E) == 0) { /* No descriptors available. Bail out. */ /* * FIXME: This is wrong. We should probably either * save the remainder for when more RX buffers are * available, or flag an error. */ qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", TYPE_IMX_FEC, __func__); break; } buf_len = (size <= s->emrbr) ? size : s->emrbr; bd.length = buf_len; size -= buf_len; FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length); /* The last 4 bytes are the CRC. */ if (size < 4) { buf_len += size - 4; } buf_addr = bd.data; dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); buf += buf_len; if (size < 4) { dma_memory_write(&address_space_memory, buf_addr + buf_len, crc_ptr, 4 - size); crc_ptr += 4 - size; } bd.flags &= ~FEC_BD_E; if (size == 0) { /* Last buffer in frame. */ bd.flags |= flags | FEC_BD_L; FEC_PRINTF("rx frame flags %04x\n", bd.flags); s->eir |= FEC_INT_RXF; } else { s->eir |= FEC_INT_RXB; } imx_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & FEC_BD_W) != 0) { addr = s->erdsr; } else { addr += 8; } } s->rx_descriptor = addr; imx_fec_enable_rx(s); imx_fec_update(s); return len; } static const MemoryRegionOps imx_fec_ops = { .read = imx_fec_read, .write = imx_fec_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; static void imx_fec_cleanup(NetClientState *nc) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); s->nic = NULL; } static NetClientInfo net_imx_fec_info = { .type = NET_CLIENT_OPTIONS_KIND_NIC, .size = sizeof(NICState), .can_receive = imx_fec_can_receive, .receive = imx_fec_receive, .cleanup = imx_fec_cleanup, .link_status_changed = imx_fec_set_link, }; static void imx_fec_realize(DeviceState *dev, Error **errp) { IMXFECState *s = IMX_FEC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); memory_region_init_io(&s->iomem, OBJECT(dev), &imx_fec_ops, s, TYPE_IMX_FEC, 0x400); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->conf.peers.ncs[0] = nd_table[0].netdev; s->nic = qemu_new_nic(&net_imx_fec_info, &s->conf, object_get_typename(OBJECT(dev)), DEVICE(dev)->id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static Property imx_fec_properties[] = { DEFINE_NIC_PROPERTIES(IMXFECState, conf), DEFINE_PROP_END_OF_LIST(), }; static void imx_fec_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_imx_fec; dc->reset = imx_fec_reset; dc->props = imx_fec_properties; dc->realize = imx_fec_realize; dc->desc = "i.MX FEC Ethernet Controller"; } static const TypeInfo imx_fec_info = { .name = TYPE_IMX_FEC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IMXFECState), .class_init = imx_fec_class_init, }; static void imx_fec_register_types(void) { type_register_static(&imx_fec_info); } type_init(imx_fec_register_types)