migration: do cleanup operation after completion
[kvmfornfv.git] / qemu / target-ppc / fpu_helper.c
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21
22 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
23 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
24
25 /*****************************************************************************/
26 /* Floating point operations helpers */
27 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
28 {
29     CPU_FloatU f;
30     CPU_DoubleU d;
31
32     f.l = arg;
33     d.d = float32_to_float64(f.f, &env->fp_status);
34     return d.ll;
35 }
36
37 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
38 {
39     CPU_FloatU f;
40     CPU_DoubleU d;
41
42     d.ll = arg;
43     f.f = float64_to_float32(d.d, &env->fp_status);
44     return f.l;
45 }
46
47 static inline int isden(float64 d)
48 {
49     CPU_DoubleU u;
50
51     u.d = d;
52
53     return ((u.ll >> 52) & 0x7FF) == 0;
54 }
55
56 static inline int ppc_float32_get_unbiased_exp(float32 f)
57 {
58     return ((f >> 23) & 0xFF) - 127;
59 }
60
61 static inline int ppc_float64_get_unbiased_exp(float64 f)
62 {
63     return ((f >> 52) & 0x7FF) - 1023;
64 }
65
66 void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
67 {
68     CPU_DoubleU farg;
69     int isneg;
70     int fprf;
71
72     farg.ll = arg;
73     isneg = float64_is_neg(farg.d);
74     if (unlikely(float64_is_any_nan(farg.d))) {
75         if (float64_is_signaling_nan(farg.d)) {
76             /* Signaling NaN: flags are undefined */
77             fprf = 0x00;
78         } else {
79             /* Quiet NaN */
80             fprf = 0x11;
81         }
82     } else if (unlikely(float64_is_infinity(farg.d))) {
83         /* +/- infinity */
84         if (isneg) {
85             fprf = 0x09;
86         } else {
87             fprf = 0x05;
88         }
89     } else {
90         if (float64_is_zero(farg.d)) {
91             /* +/- zero */
92             if (isneg) {
93                 fprf = 0x12;
94             } else {
95                 fprf = 0x02;
96             }
97         } else {
98             if (isden(farg.d)) {
99                 /* Denormalized numbers */
100                 fprf = 0x10;
101             } else {
102                 /* Normalized numbers */
103                 fprf = 0x00;
104             }
105             if (isneg) {
106                 fprf |= 0x08;
107             } else {
108                 fprf |= 0x04;
109             }
110         }
111     }
112     /* We update FPSCR_FPRF */
113     env->fpscr &= ~(0x1F << FPSCR_FPRF);
114     env->fpscr |= fprf << FPSCR_FPRF;
115 }
116
117 /* Floating-point invalid operations exception */
118 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
119                                              int set_fpcc)
120 {
121     CPUState *cs = CPU(ppc_env_get_cpu(env));
122     uint64_t ret = 0;
123     int ve;
124
125     ve = fpscr_ve;
126     switch (op) {
127     case POWERPC_EXCP_FP_VXSNAN:
128         env->fpscr |= 1 << FPSCR_VXSNAN;
129         break;
130     case POWERPC_EXCP_FP_VXSOFT:
131         env->fpscr |= 1 << FPSCR_VXSOFT;
132         break;
133     case POWERPC_EXCP_FP_VXISI:
134         /* Magnitude subtraction of infinities */
135         env->fpscr |= 1 << FPSCR_VXISI;
136         goto update_arith;
137     case POWERPC_EXCP_FP_VXIDI:
138         /* Division of infinity by infinity */
139         env->fpscr |= 1 << FPSCR_VXIDI;
140         goto update_arith;
141     case POWERPC_EXCP_FP_VXZDZ:
142         /* Division of zero by zero */
143         env->fpscr |= 1 << FPSCR_VXZDZ;
144         goto update_arith;
145     case POWERPC_EXCP_FP_VXIMZ:
146         /* Multiplication of zero by infinity */
147         env->fpscr |= 1 << FPSCR_VXIMZ;
148         goto update_arith;
149     case POWERPC_EXCP_FP_VXVC:
150         /* Ordered comparison of NaN */
151         env->fpscr |= 1 << FPSCR_VXVC;
152         if (set_fpcc) {
153             env->fpscr &= ~(0xF << FPSCR_FPCC);
154             env->fpscr |= 0x11 << FPSCR_FPCC;
155         }
156         /* We must update the target FPR before raising the exception */
157         if (ve != 0) {
158             cs->exception_index = POWERPC_EXCP_PROGRAM;
159             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
160             /* Update the floating-point enabled exception summary */
161             env->fpscr |= 1 << FPSCR_FEX;
162             /* Exception is differed */
163             ve = 0;
164         }
165         break;
166     case POWERPC_EXCP_FP_VXSQRT:
167         /* Square root of a negative number */
168         env->fpscr |= 1 << FPSCR_VXSQRT;
169     update_arith:
170         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
171         if (ve == 0) {
172             /* Set the result to quiet NaN */
173             ret = 0x7FF8000000000000ULL;
174             if (set_fpcc) {
175                 env->fpscr &= ~(0xF << FPSCR_FPCC);
176                 env->fpscr |= 0x11 << FPSCR_FPCC;
177             }
178         }
179         break;
180     case POWERPC_EXCP_FP_VXCVI:
181         /* Invalid conversion */
182         env->fpscr |= 1 << FPSCR_VXCVI;
183         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
184         if (ve == 0) {
185             /* Set the result to quiet NaN */
186             ret = 0x7FF8000000000000ULL;
187             if (set_fpcc) {
188                 env->fpscr &= ~(0xF << FPSCR_FPCC);
189                 env->fpscr |= 0x11 << FPSCR_FPCC;
190             }
191         }
192         break;
193     }
194     /* Update the floating-point invalid operation summary */
195     env->fpscr |= 1 << FPSCR_VX;
196     /* Update the floating-point exception summary */
197     env->fpscr |= 1 << FPSCR_FX;
198     if (ve != 0) {
199         /* Update the floating-point enabled exception summary */
200         env->fpscr |= 1 << FPSCR_FEX;
201         if (msr_fe0 != 0 || msr_fe1 != 0) {
202             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
203                                        POWERPC_EXCP_FP | op);
204         }
205     }
206     return ret;
207 }
208
209 static inline void float_zero_divide_excp(CPUPPCState *env)
210 {
211     env->fpscr |= 1 << FPSCR_ZX;
212     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
213     /* Update the floating-point exception summary */
214     env->fpscr |= 1 << FPSCR_FX;
215     if (fpscr_ze != 0) {
216         /* Update the floating-point enabled exception summary */
217         env->fpscr |= 1 << FPSCR_FEX;
218         if (msr_fe0 != 0 || msr_fe1 != 0) {
219             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
220                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
221         }
222     }
223 }
224
225 static inline void float_overflow_excp(CPUPPCState *env)
226 {
227     CPUState *cs = CPU(ppc_env_get_cpu(env));
228
229     env->fpscr |= 1 << FPSCR_OX;
230     /* Update the floating-point exception summary */
231     env->fpscr |= 1 << FPSCR_FX;
232     if (fpscr_oe != 0) {
233         /* XXX: should adjust the result */
234         /* Update the floating-point enabled exception summary */
235         env->fpscr |= 1 << FPSCR_FEX;
236         /* We must update the target FPR before raising the exception */
237         cs->exception_index = POWERPC_EXCP_PROGRAM;
238         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
239     } else {
240         env->fpscr |= 1 << FPSCR_XX;
241         env->fpscr |= 1 << FPSCR_FI;
242     }
243 }
244
245 static inline void float_underflow_excp(CPUPPCState *env)
246 {
247     CPUState *cs = CPU(ppc_env_get_cpu(env));
248
249     env->fpscr |= 1 << FPSCR_UX;
250     /* Update the floating-point exception summary */
251     env->fpscr |= 1 << FPSCR_FX;
252     if (fpscr_ue != 0) {
253         /* XXX: should adjust the result */
254         /* Update the floating-point enabled exception summary */
255         env->fpscr |= 1 << FPSCR_FEX;
256         /* We must update the target FPR before raising the exception */
257         cs->exception_index = POWERPC_EXCP_PROGRAM;
258         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
259     }
260 }
261
262 static inline void float_inexact_excp(CPUPPCState *env)
263 {
264     CPUState *cs = CPU(ppc_env_get_cpu(env));
265
266     env->fpscr |= 1 << FPSCR_XX;
267     /* Update the floating-point exception summary */
268     env->fpscr |= 1 << FPSCR_FX;
269     if (fpscr_xe != 0) {
270         /* Update the floating-point enabled exception summary */
271         env->fpscr |= 1 << FPSCR_FEX;
272         /* We must update the target FPR before raising the exception */
273         cs->exception_index = POWERPC_EXCP_PROGRAM;
274         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
275     }
276 }
277
278 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
279 {
280     int rnd_type;
281
282     /* Set rounding mode */
283     switch (fpscr_rn) {
284     case 0:
285         /* Best approximation (round to nearest) */
286         rnd_type = float_round_nearest_even;
287         break;
288     case 1:
289         /* Smaller magnitude (round toward zero) */
290         rnd_type = float_round_to_zero;
291         break;
292     case 2:
293         /* Round toward +infinite */
294         rnd_type = float_round_up;
295         break;
296     default:
297     case 3:
298         /* Round toward -infinite */
299         rnd_type = float_round_down;
300         break;
301     }
302     set_float_rounding_mode(rnd_type, &env->fp_status);
303 }
304
305 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
306 {
307     int prev;
308
309     prev = (env->fpscr >> bit) & 1;
310     env->fpscr &= ~(1 << bit);
311     if (prev == 1) {
312         switch (bit) {
313         case FPSCR_RN1:
314         case FPSCR_RN:
315             fpscr_set_rounding_mode(env);
316             break;
317         default:
318             break;
319         }
320     }
321 }
322
323 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
324 {
325     CPUState *cs = CPU(ppc_env_get_cpu(env));
326     int prev;
327
328     prev = (env->fpscr >> bit) & 1;
329     env->fpscr |= 1 << bit;
330     if (prev == 0) {
331         switch (bit) {
332         case FPSCR_VX:
333             env->fpscr |= 1 << FPSCR_FX;
334             if (fpscr_ve) {
335                 goto raise_ve;
336             }
337             break;
338         case FPSCR_OX:
339             env->fpscr |= 1 << FPSCR_FX;
340             if (fpscr_oe) {
341                 goto raise_oe;
342             }
343             break;
344         case FPSCR_UX:
345             env->fpscr |= 1 << FPSCR_FX;
346             if (fpscr_ue) {
347                 goto raise_ue;
348             }
349             break;
350         case FPSCR_ZX:
351             env->fpscr |= 1 << FPSCR_FX;
352             if (fpscr_ze) {
353                 goto raise_ze;
354             }
355             break;
356         case FPSCR_XX:
357             env->fpscr |= 1 << FPSCR_FX;
358             if (fpscr_xe) {
359                 goto raise_xe;
360             }
361             break;
362         case FPSCR_VXSNAN:
363         case FPSCR_VXISI:
364         case FPSCR_VXIDI:
365         case FPSCR_VXZDZ:
366         case FPSCR_VXIMZ:
367         case FPSCR_VXVC:
368         case FPSCR_VXSOFT:
369         case FPSCR_VXSQRT:
370         case FPSCR_VXCVI:
371             env->fpscr |= 1 << FPSCR_VX;
372             env->fpscr |= 1 << FPSCR_FX;
373             if (fpscr_ve != 0) {
374                 goto raise_ve;
375             }
376             break;
377         case FPSCR_VE:
378             if (fpscr_vx != 0) {
379             raise_ve:
380                 env->error_code = POWERPC_EXCP_FP;
381                 if (fpscr_vxsnan) {
382                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
383                 }
384                 if (fpscr_vxisi) {
385                     env->error_code |= POWERPC_EXCP_FP_VXISI;
386                 }
387                 if (fpscr_vxidi) {
388                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
389                 }
390                 if (fpscr_vxzdz) {
391                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
392                 }
393                 if (fpscr_vximz) {
394                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
395                 }
396                 if (fpscr_vxvc) {
397                     env->error_code |= POWERPC_EXCP_FP_VXVC;
398                 }
399                 if (fpscr_vxsoft) {
400                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
401                 }
402                 if (fpscr_vxsqrt) {
403                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
404                 }
405                 if (fpscr_vxcvi) {
406                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
407                 }
408                 goto raise_excp;
409             }
410             break;
411         case FPSCR_OE:
412             if (fpscr_ox != 0) {
413             raise_oe:
414                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
415                 goto raise_excp;
416             }
417             break;
418         case FPSCR_UE:
419             if (fpscr_ux != 0) {
420             raise_ue:
421                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
422                 goto raise_excp;
423             }
424             break;
425         case FPSCR_ZE:
426             if (fpscr_zx != 0) {
427             raise_ze:
428                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
429                 goto raise_excp;
430             }
431             break;
432         case FPSCR_XE:
433             if (fpscr_xx != 0) {
434             raise_xe:
435                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
436                 goto raise_excp;
437             }
438             break;
439         case FPSCR_RN1:
440         case FPSCR_RN:
441             fpscr_set_rounding_mode(env);
442             break;
443         default:
444             break;
445         raise_excp:
446             /* Update the floating-point enabled exception summary */
447             env->fpscr |= 1 << FPSCR_FEX;
448             /* We have to update Rc1 before raising the exception */
449             cs->exception_index = POWERPC_EXCP_PROGRAM;
450             break;
451         }
452     }
453 }
454
455 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
456 {
457     CPUState *cs = CPU(ppc_env_get_cpu(env));
458     target_ulong prev, new;
459     int i;
460
461     prev = env->fpscr;
462     new = (target_ulong)arg;
463     new &= ~0x60000000LL;
464     new |= prev & 0x60000000LL;
465     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
466         if (mask & (1 << i)) {
467             env->fpscr &= ~(0xFLL << (4 * i));
468             env->fpscr |= new & (0xFLL << (4 * i));
469         }
470     }
471     /* Update VX and FEX */
472     if (fpscr_ix != 0) {
473         env->fpscr |= 1 << FPSCR_VX;
474     } else {
475         env->fpscr &= ~(1 << FPSCR_VX);
476     }
477     if ((fpscr_ex & fpscr_eex) != 0) {
478         env->fpscr |= 1 << FPSCR_FEX;
479         cs->exception_index = POWERPC_EXCP_PROGRAM;
480         /* XXX: we should compute it properly */
481         env->error_code = POWERPC_EXCP_FP;
482     } else {
483         env->fpscr &= ~(1 << FPSCR_FEX);
484     }
485     fpscr_set_rounding_mode(env);
486 }
487
488 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
489 {
490     helper_store_fpscr(env, arg, mask);
491 }
492
493 void helper_float_check_status(CPUPPCState *env)
494 {
495     CPUState *cs = CPU(ppc_env_get_cpu(env));
496     int status = get_float_exception_flags(&env->fp_status);
497
498     if (status & float_flag_divbyzero) {
499         float_zero_divide_excp(env);
500     } else if (status & float_flag_overflow) {
501         float_overflow_excp(env);
502     } else if (status & float_flag_underflow) {
503         float_underflow_excp(env);
504     } else if (status & float_flag_inexact) {
505         float_inexact_excp(env);
506     }
507
508     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
509         (env->error_code & POWERPC_EXCP_FP)) {
510         /* Differred floating-point exception after target FPR update */
511         if (msr_fe0 != 0 || msr_fe1 != 0) {
512             helper_raise_exception_err(env, cs->exception_index,
513                                        env->error_code);
514         }
515     }
516 }
517
518 void helper_reset_fpstatus(CPUPPCState *env)
519 {
520     set_float_exception_flags(0, &env->fp_status);
521 }
522
523 /* fadd - fadd. */
524 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
525 {
526     CPU_DoubleU farg1, farg2;
527
528     farg1.ll = arg1;
529     farg2.ll = arg2;
530
531     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
532                  float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
533         /* Magnitude subtraction of infinities */
534         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
535     } else {
536         if (unlikely(float64_is_signaling_nan(farg1.d) ||
537                      float64_is_signaling_nan(farg2.d))) {
538             /* sNaN addition */
539             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
540         }
541         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
542     }
543
544     return farg1.ll;
545 }
546
547 /* fsub - fsub. */
548 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
549 {
550     CPU_DoubleU farg1, farg2;
551
552     farg1.ll = arg1;
553     farg2.ll = arg2;
554
555     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
556                  float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
557         /* Magnitude subtraction of infinities */
558         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
559     } else {
560         if (unlikely(float64_is_signaling_nan(farg1.d) ||
561                      float64_is_signaling_nan(farg2.d))) {
562             /* sNaN subtraction */
563             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
564         }
565         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
566     }
567
568     return farg1.ll;
569 }
570
571 /* fmul - fmul. */
572 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
573 {
574     CPU_DoubleU farg1, farg2;
575
576     farg1.ll = arg1;
577     farg2.ll = arg2;
578
579     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
580                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
581         /* Multiplication of zero by infinity */
582         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
583     } else {
584         if (unlikely(float64_is_signaling_nan(farg1.d) ||
585                      float64_is_signaling_nan(farg2.d))) {
586             /* sNaN multiplication */
587             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
588         }
589         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
590     }
591
592     return farg1.ll;
593 }
594
595 /* fdiv - fdiv. */
596 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
597 {
598     CPU_DoubleU farg1, farg2;
599
600     farg1.ll = arg1;
601     farg2.ll = arg2;
602
603     if (unlikely(float64_is_infinity(farg1.d) &&
604                  float64_is_infinity(farg2.d))) {
605         /* Division of infinity by infinity */
606         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
607     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
608         /* Division of zero by zero */
609         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
610     } else {
611         if (unlikely(float64_is_signaling_nan(farg1.d) ||
612                      float64_is_signaling_nan(farg2.d))) {
613             /* sNaN division */
614             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
615         }
616         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
617     }
618
619     return farg1.ll;
620 }
621
622
623 #define FPU_FCTI(op, cvt, nanval)                                      \
624 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
625 {                                                                      \
626     CPU_DoubleU farg;                                                  \
627                                                                        \
628     farg.ll = arg;                                                     \
629     farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
630                                                                        \
631     if (unlikely(env->fp_status.float_exception_flags)) {              \
632         if (float64_is_any_nan(arg)) {                                 \
633             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
634             if (float64_is_signaling_nan(arg)) {                       \
635                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
636             }                                                          \
637             farg.ll = nanval;                                          \
638         } else if (env->fp_status.float_exception_flags &              \
639                    float_flag_invalid) {                               \
640             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
641         }                                                              \
642         helper_float_check_status(env);                                \
643     }                                                                  \
644     return farg.ll;                                                    \
645  }
646
647 FPU_FCTI(fctiw, int32, 0x80000000U)
648 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
649 FPU_FCTI(fctiwu, uint32, 0x00000000U)
650 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
651 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
652 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
653 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
654 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
655
656 #define FPU_FCFI(op, cvtr, is_single)                      \
657 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
658 {                                                          \
659     CPU_DoubleU farg;                                      \
660                                                            \
661     if (is_single) {                                       \
662         float32 tmp = cvtr(arg, &env->fp_status);          \
663         farg.d = float32_to_float64(tmp, &env->fp_status); \
664     } else {                                               \
665         farg.d = cvtr(arg, &env->fp_status);               \
666     }                                                      \
667     helper_float_check_status(env);                        \
668     return farg.ll;                                        \
669 }
670
671 FPU_FCFI(fcfid, int64_to_float64, 0)
672 FPU_FCFI(fcfids, int64_to_float32, 1)
673 FPU_FCFI(fcfidu, uint64_to_float64, 0)
674 FPU_FCFI(fcfidus, uint64_to_float32, 1)
675
676 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
677                               int rounding_mode)
678 {
679     CPU_DoubleU farg;
680
681     farg.ll = arg;
682
683     if (unlikely(float64_is_signaling_nan(farg.d))) {
684         /* sNaN round */
685         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
686         farg.ll = arg | 0x0008000000000000ULL;
687     } else {
688         int inexact = get_float_exception_flags(&env->fp_status) &
689                       float_flag_inexact;
690         set_float_rounding_mode(rounding_mode, &env->fp_status);
691         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
692         /* Restore rounding mode from FPSCR */
693         fpscr_set_rounding_mode(env);
694
695         /* fri* does not set FPSCR[XX] */
696         if (!inexact) {
697             env->fp_status.float_exception_flags &= ~float_flag_inexact;
698         }
699     }
700     helper_float_check_status(env);
701     return farg.ll;
702 }
703
704 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
705 {
706     return do_fri(env, arg, float_round_ties_away);
707 }
708
709 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
710 {
711     return do_fri(env, arg, float_round_to_zero);
712 }
713
714 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
715 {
716     return do_fri(env, arg, float_round_up);
717 }
718
719 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
720 {
721     return do_fri(env, arg, float_round_down);
722 }
723
724 /* fmadd - fmadd. */
725 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
726                       uint64_t arg3)
727 {
728     CPU_DoubleU farg1, farg2, farg3;
729
730     farg1.ll = arg1;
731     farg2.ll = arg2;
732     farg3.ll = arg3;
733
734     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
735                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
736         /* Multiplication of zero by infinity */
737         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
738     } else {
739         if (unlikely(float64_is_signaling_nan(farg1.d) ||
740                      float64_is_signaling_nan(farg2.d) ||
741                      float64_is_signaling_nan(farg3.d))) {
742             /* sNaN operation */
743             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
744         }
745         /* This is the way the PowerPC specification defines it */
746         float128 ft0_128, ft1_128;
747
748         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
749         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
750         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
751         if (unlikely(float128_is_infinity(ft0_128) &&
752                      float64_is_infinity(farg3.d) &&
753                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
754             /* Magnitude subtraction of infinities */
755             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
756         } else {
757             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
758             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
759             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
760         }
761     }
762
763     return farg1.ll;
764 }
765
766 /* fmsub - fmsub. */
767 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
768                       uint64_t arg3)
769 {
770     CPU_DoubleU farg1, farg2, farg3;
771
772     farg1.ll = arg1;
773     farg2.ll = arg2;
774     farg3.ll = arg3;
775
776     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
777                  (float64_is_zero(farg1.d) &&
778                   float64_is_infinity(farg2.d)))) {
779         /* Multiplication of zero by infinity */
780         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
781     } else {
782         if (unlikely(float64_is_signaling_nan(farg1.d) ||
783                      float64_is_signaling_nan(farg2.d) ||
784                      float64_is_signaling_nan(farg3.d))) {
785             /* sNaN operation */
786             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
787         }
788         /* This is the way the PowerPC specification defines it */
789         float128 ft0_128, ft1_128;
790
791         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
792         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
793         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
794         if (unlikely(float128_is_infinity(ft0_128) &&
795                      float64_is_infinity(farg3.d) &&
796                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
797             /* Magnitude subtraction of infinities */
798             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
799         } else {
800             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
801             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
802             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
803         }
804     }
805     return farg1.ll;
806 }
807
808 /* fnmadd - fnmadd. */
809 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
810                        uint64_t arg3)
811 {
812     CPU_DoubleU farg1, farg2, farg3;
813
814     farg1.ll = arg1;
815     farg2.ll = arg2;
816     farg3.ll = arg3;
817
818     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
819                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
820         /* Multiplication of zero by infinity */
821         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
822     } else {
823         if (unlikely(float64_is_signaling_nan(farg1.d) ||
824                      float64_is_signaling_nan(farg2.d) ||
825                      float64_is_signaling_nan(farg3.d))) {
826             /* sNaN operation */
827             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
828         }
829         /* This is the way the PowerPC specification defines it */
830         float128 ft0_128, ft1_128;
831
832         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
833         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
834         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
835         if (unlikely(float128_is_infinity(ft0_128) &&
836                      float64_is_infinity(farg3.d) &&
837                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
838             /* Magnitude subtraction of infinities */
839             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
840         } else {
841             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
842             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
843             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
844         }
845         if (likely(!float64_is_any_nan(farg1.d))) {
846             farg1.d = float64_chs(farg1.d);
847         }
848     }
849     return farg1.ll;
850 }
851
852 /* fnmsub - fnmsub. */
853 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
854                        uint64_t arg3)
855 {
856     CPU_DoubleU farg1, farg2, farg3;
857
858     farg1.ll = arg1;
859     farg2.ll = arg2;
860     farg3.ll = arg3;
861
862     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
863                  (float64_is_zero(farg1.d) &&
864                   float64_is_infinity(farg2.d)))) {
865         /* Multiplication of zero by infinity */
866         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
867     } else {
868         if (unlikely(float64_is_signaling_nan(farg1.d) ||
869                      float64_is_signaling_nan(farg2.d) ||
870                      float64_is_signaling_nan(farg3.d))) {
871             /* sNaN operation */
872             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
873         }
874         /* This is the way the PowerPC specification defines it */
875         float128 ft0_128, ft1_128;
876
877         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
878         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
879         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
880         if (unlikely(float128_is_infinity(ft0_128) &&
881                      float64_is_infinity(farg3.d) &&
882                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
883             /* Magnitude subtraction of infinities */
884             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
885         } else {
886             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
887             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
888             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
889         }
890         if (likely(!float64_is_any_nan(farg1.d))) {
891             farg1.d = float64_chs(farg1.d);
892         }
893     }
894     return farg1.ll;
895 }
896
897 /* frsp - frsp. */
898 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
899 {
900     CPU_DoubleU farg;
901     float32 f32;
902
903     farg.ll = arg;
904
905     if (unlikely(float64_is_signaling_nan(farg.d))) {
906         /* sNaN square root */
907         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
908     }
909     f32 = float64_to_float32(farg.d, &env->fp_status);
910     farg.d = float32_to_float64(f32, &env->fp_status);
911
912     return farg.ll;
913 }
914
915 /* fsqrt - fsqrt. */
916 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
917 {
918     CPU_DoubleU farg;
919
920     farg.ll = arg;
921
922     if (unlikely(float64_is_any_nan(farg.d))) {
923         if (unlikely(float64_is_signaling_nan(farg.d))) {
924             /* sNaN reciprocal square root */
925             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
926             farg.ll = float64_snan_to_qnan(farg.ll);
927         }
928     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
929         /* Square root of a negative nonzero number */
930         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
931     } else {
932         farg.d = float64_sqrt(farg.d, &env->fp_status);
933     }
934     return farg.ll;
935 }
936
937 /* fre - fre. */
938 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
939 {
940     CPU_DoubleU farg;
941
942     farg.ll = arg;
943
944     if (unlikely(float64_is_signaling_nan(farg.d))) {
945         /* sNaN reciprocal */
946         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
947     }
948     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
949     return farg.d;
950 }
951
952 /* fres - fres. */
953 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
954 {
955     CPU_DoubleU farg;
956     float32 f32;
957
958     farg.ll = arg;
959
960     if (unlikely(float64_is_signaling_nan(farg.d))) {
961         /* sNaN reciprocal */
962         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
963     }
964     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
965     f32 = float64_to_float32(farg.d, &env->fp_status);
966     farg.d = float32_to_float64(f32, &env->fp_status);
967
968     return farg.ll;
969 }
970
971 /* frsqrte  - frsqrte. */
972 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
973 {
974     CPU_DoubleU farg;
975
976     farg.ll = arg;
977
978     if (unlikely(float64_is_any_nan(farg.d))) {
979         if (unlikely(float64_is_signaling_nan(farg.d))) {
980             /* sNaN reciprocal square root */
981             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
982             farg.ll = float64_snan_to_qnan(farg.ll);
983         }
984     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
985         /* Reciprocal square root of a negative nonzero number */
986         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
987     } else {
988         farg.d = float64_sqrt(farg.d, &env->fp_status);
989         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
990     }
991
992     return farg.ll;
993 }
994
995 /* fsel - fsel. */
996 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
997                      uint64_t arg3)
998 {
999     CPU_DoubleU farg1;
1000
1001     farg1.ll = arg1;
1002
1003     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1004         !float64_is_any_nan(farg1.d)) {
1005         return arg2;
1006     } else {
1007         return arg3;
1008     }
1009 }
1010
1011 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1012 {
1013     int fe_flag = 0;
1014     int fg_flag = 0;
1015
1016     if (unlikely(float64_is_infinity(fra) ||
1017                  float64_is_infinity(frb) ||
1018                  float64_is_zero(frb))) {
1019         fe_flag = 1;
1020         fg_flag = 1;
1021     } else {
1022         int e_a = ppc_float64_get_unbiased_exp(fra);
1023         int e_b = ppc_float64_get_unbiased_exp(frb);
1024
1025         if (unlikely(float64_is_any_nan(fra) ||
1026                      float64_is_any_nan(frb))) {
1027             fe_flag = 1;
1028         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1029             fe_flag = 1;
1030         } else if (!float64_is_zero(fra) &&
1031                    (((e_a - e_b) >= 1023) ||
1032                     ((e_a - e_b) <= -1021) ||
1033                     (e_a <= -970))) {
1034             fe_flag = 1;
1035         }
1036
1037         if (unlikely(float64_is_zero_or_denormal(frb))) {
1038             /* XB is not zero because of the above check and */
1039             /* so must be denormalized.                      */
1040             fg_flag = 1;
1041         }
1042     }
1043
1044     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1045 }
1046
1047 uint32_t helper_ftsqrt(uint64_t frb)
1048 {
1049     int fe_flag = 0;
1050     int fg_flag = 0;
1051
1052     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1053         fe_flag = 1;
1054         fg_flag = 1;
1055     } else {
1056         int e_b = ppc_float64_get_unbiased_exp(frb);
1057
1058         if (unlikely(float64_is_any_nan(frb))) {
1059             fe_flag = 1;
1060         } else if (unlikely(float64_is_zero(frb))) {
1061             fe_flag = 1;
1062         } else if (unlikely(float64_is_neg(frb))) {
1063             fe_flag = 1;
1064         } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1065             fe_flag = 1;
1066         }
1067
1068         if (unlikely(float64_is_zero_or_denormal(frb))) {
1069             /* XB is not zero because of the above check and */
1070             /* therefore must be denormalized.               */
1071             fg_flag = 1;
1072         }
1073     }
1074
1075     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1076 }
1077
1078 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1079                   uint32_t crfD)
1080 {
1081     CPU_DoubleU farg1, farg2;
1082     uint32_t ret = 0;
1083
1084     farg1.ll = arg1;
1085     farg2.ll = arg2;
1086
1087     if (unlikely(float64_is_any_nan(farg1.d) ||
1088                  float64_is_any_nan(farg2.d))) {
1089         ret = 0x01UL;
1090     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1091         ret = 0x08UL;
1092     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1093         ret = 0x04UL;
1094     } else {
1095         ret = 0x02UL;
1096     }
1097
1098     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1099     env->fpscr |= ret << FPSCR_FPRF;
1100     env->crf[crfD] = ret;
1101     if (unlikely(ret == 0x01UL
1102                  && (float64_is_signaling_nan(farg1.d) ||
1103                      float64_is_signaling_nan(farg2.d)))) {
1104         /* sNaN comparison */
1105         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1106     }
1107 }
1108
1109 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110                   uint32_t crfD)
1111 {
1112     CPU_DoubleU farg1, farg2;
1113     uint32_t ret = 0;
1114
1115     farg1.ll = arg1;
1116     farg2.ll = arg2;
1117
1118     if (unlikely(float64_is_any_nan(farg1.d) ||
1119                  float64_is_any_nan(farg2.d))) {
1120         ret = 0x01UL;
1121     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122         ret = 0x08UL;
1123     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124         ret = 0x04UL;
1125     } else {
1126         ret = 0x02UL;
1127     }
1128
1129     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130     env->fpscr |= ret << FPSCR_FPRF;
1131     env->crf[crfD] = ret;
1132     if (unlikely(ret == 0x01UL)) {
1133         if (float64_is_signaling_nan(farg1.d) ||
1134             float64_is_signaling_nan(farg2.d)) {
1135             /* sNaN comparison */
1136             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1137                                   POWERPC_EXCP_FP_VXVC, 1);
1138         } else {
1139             /* qNaN comparison */
1140             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1141         }
1142     }
1143 }
1144
1145 /* Single-precision floating-point conversions */
1146 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1147 {
1148     CPU_FloatU u;
1149
1150     u.f = int32_to_float32(val, &env->vec_status);
1151
1152     return u.l;
1153 }
1154
1155 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1156 {
1157     CPU_FloatU u;
1158
1159     u.f = uint32_to_float32(val, &env->vec_status);
1160
1161     return u.l;
1162 }
1163
1164 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1165 {
1166     CPU_FloatU u;
1167
1168     u.l = val;
1169     /* NaN are not treated the same way IEEE 754 does */
1170     if (unlikely(float32_is_quiet_nan(u.f))) {
1171         return 0;
1172     }
1173
1174     return float32_to_int32(u.f, &env->vec_status);
1175 }
1176
1177 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1178 {
1179     CPU_FloatU u;
1180
1181     u.l = val;
1182     /* NaN are not treated the same way IEEE 754 does */
1183     if (unlikely(float32_is_quiet_nan(u.f))) {
1184         return 0;
1185     }
1186
1187     return float32_to_uint32(u.f, &env->vec_status);
1188 }
1189
1190 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1191 {
1192     CPU_FloatU u;
1193
1194     u.l = val;
1195     /* NaN are not treated the same way IEEE 754 does */
1196     if (unlikely(float32_is_quiet_nan(u.f))) {
1197         return 0;
1198     }
1199
1200     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1201 }
1202
1203 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1204 {
1205     CPU_FloatU u;
1206
1207     u.l = val;
1208     /* NaN are not treated the same way IEEE 754 does */
1209     if (unlikely(float32_is_quiet_nan(u.f))) {
1210         return 0;
1211     }
1212
1213     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1214 }
1215
1216 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1217 {
1218     CPU_FloatU u;
1219     float32 tmp;
1220
1221     u.f = int32_to_float32(val, &env->vec_status);
1222     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1223     u.f = float32_div(u.f, tmp, &env->vec_status);
1224
1225     return u.l;
1226 }
1227
1228 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1229 {
1230     CPU_FloatU u;
1231     float32 tmp;
1232
1233     u.f = uint32_to_float32(val, &env->vec_status);
1234     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1235     u.f = float32_div(u.f, tmp, &env->vec_status);
1236
1237     return u.l;
1238 }
1239
1240 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1241 {
1242     CPU_FloatU u;
1243     float32 tmp;
1244
1245     u.l = val;
1246     /* NaN are not treated the same way IEEE 754 does */
1247     if (unlikely(float32_is_quiet_nan(u.f))) {
1248         return 0;
1249     }
1250     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1251     u.f = float32_mul(u.f, tmp, &env->vec_status);
1252
1253     return float32_to_int32(u.f, &env->vec_status);
1254 }
1255
1256 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1257 {
1258     CPU_FloatU u;
1259     float32 tmp;
1260
1261     u.l = val;
1262     /* NaN are not treated the same way IEEE 754 does */
1263     if (unlikely(float32_is_quiet_nan(u.f))) {
1264         return 0;
1265     }
1266     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1267     u.f = float32_mul(u.f, tmp, &env->vec_status);
1268
1269     return float32_to_uint32(u.f, &env->vec_status);
1270 }
1271
1272 #define HELPER_SPE_SINGLE_CONV(name)                              \
1273     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1274     {                                                             \
1275         return e##name(env, val);                                 \
1276     }
1277 /* efscfsi */
1278 HELPER_SPE_SINGLE_CONV(fscfsi);
1279 /* efscfui */
1280 HELPER_SPE_SINGLE_CONV(fscfui);
1281 /* efscfuf */
1282 HELPER_SPE_SINGLE_CONV(fscfuf);
1283 /* efscfsf */
1284 HELPER_SPE_SINGLE_CONV(fscfsf);
1285 /* efsctsi */
1286 HELPER_SPE_SINGLE_CONV(fsctsi);
1287 /* efsctui */
1288 HELPER_SPE_SINGLE_CONV(fsctui);
1289 /* efsctsiz */
1290 HELPER_SPE_SINGLE_CONV(fsctsiz);
1291 /* efsctuiz */
1292 HELPER_SPE_SINGLE_CONV(fsctuiz);
1293 /* efsctsf */
1294 HELPER_SPE_SINGLE_CONV(fsctsf);
1295 /* efsctuf */
1296 HELPER_SPE_SINGLE_CONV(fsctuf);
1297
1298 #define HELPER_SPE_VECTOR_CONV(name)                            \
1299     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1300     {                                                           \
1301         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1302             (uint64_t)e##name(env, val);                        \
1303     }
1304 /* evfscfsi */
1305 HELPER_SPE_VECTOR_CONV(fscfsi);
1306 /* evfscfui */
1307 HELPER_SPE_VECTOR_CONV(fscfui);
1308 /* evfscfuf */
1309 HELPER_SPE_VECTOR_CONV(fscfuf);
1310 /* evfscfsf */
1311 HELPER_SPE_VECTOR_CONV(fscfsf);
1312 /* evfsctsi */
1313 HELPER_SPE_VECTOR_CONV(fsctsi);
1314 /* evfsctui */
1315 HELPER_SPE_VECTOR_CONV(fsctui);
1316 /* evfsctsiz */
1317 HELPER_SPE_VECTOR_CONV(fsctsiz);
1318 /* evfsctuiz */
1319 HELPER_SPE_VECTOR_CONV(fsctuiz);
1320 /* evfsctsf */
1321 HELPER_SPE_VECTOR_CONV(fsctsf);
1322 /* evfsctuf */
1323 HELPER_SPE_VECTOR_CONV(fsctuf);
1324
1325 /* Single-precision floating-point arithmetic */
1326 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1327 {
1328     CPU_FloatU u1, u2;
1329
1330     u1.l = op1;
1331     u2.l = op2;
1332     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1333     return u1.l;
1334 }
1335
1336 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1337 {
1338     CPU_FloatU u1, u2;
1339
1340     u1.l = op1;
1341     u2.l = op2;
1342     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1343     return u1.l;
1344 }
1345
1346 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1347 {
1348     CPU_FloatU u1, u2;
1349
1350     u1.l = op1;
1351     u2.l = op2;
1352     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1353     return u1.l;
1354 }
1355
1356 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1357 {
1358     CPU_FloatU u1, u2;
1359
1360     u1.l = op1;
1361     u2.l = op2;
1362     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1363     return u1.l;
1364 }
1365
1366 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1367     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1368     {                                                                   \
1369         return e##name(env, op1, op2);                                  \
1370     }
1371 /* efsadd */
1372 HELPER_SPE_SINGLE_ARITH(fsadd);
1373 /* efssub */
1374 HELPER_SPE_SINGLE_ARITH(fssub);
1375 /* efsmul */
1376 HELPER_SPE_SINGLE_ARITH(fsmul);
1377 /* efsdiv */
1378 HELPER_SPE_SINGLE_ARITH(fsdiv);
1379
1380 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1381     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1382     {                                                                   \
1383         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1384             (uint64_t)e##name(env, op1, op2);                           \
1385     }
1386 /* evfsadd */
1387 HELPER_SPE_VECTOR_ARITH(fsadd);
1388 /* evfssub */
1389 HELPER_SPE_VECTOR_ARITH(fssub);
1390 /* evfsmul */
1391 HELPER_SPE_VECTOR_ARITH(fsmul);
1392 /* evfsdiv */
1393 HELPER_SPE_VECTOR_ARITH(fsdiv);
1394
1395 /* Single-precision floating-point comparisons */
1396 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1397 {
1398     CPU_FloatU u1, u2;
1399
1400     u1.l = op1;
1401     u2.l = op2;
1402     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1403 }
1404
1405 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1406 {
1407     CPU_FloatU u1, u2;
1408
1409     u1.l = op1;
1410     u2.l = op2;
1411     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1412 }
1413
1414 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1415 {
1416     CPU_FloatU u1, u2;
1417
1418     u1.l = op1;
1419     u2.l = op2;
1420     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1421 }
1422
1423 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1424 {
1425     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1426     return efscmplt(env, op1, op2);
1427 }
1428
1429 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1430 {
1431     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1432     return efscmpgt(env, op1, op2);
1433 }
1434
1435 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1436 {
1437     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1438     return efscmpeq(env, op1, op2);
1439 }
1440
1441 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1442     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1443     {                                                                   \
1444         return e##name(env, op1, op2) << 2;                             \
1445     }
1446 /* efststlt */
1447 HELPER_SINGLE_SPE_CMP(fststlt);
1448 /* efststgt */
1449 HELPER_SINGLE_SPE_CMP(fststgt);
1450 /* efststeq */
1451 HELPER_SINGLE_SPE_CMP(fststeq);
1452 /* efscmplt */
1453 HELPER_SINGLE_SPE_CMP(fscmplt);
1454 /* efscmpgt */
1455 HELPER_SINGLE_SPE_CMP(fscmpgt);
1456 /* efscmpeq */
1457 HELPER_SINGLE_SPE_CMP(fscmpeq);
1458
1459 static inline uint32_t evcmp_merge(int t0, int t1)
1460 {
1461     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1462 }
1463
1464 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1465     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1466     {                                                                   \
1467         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1468                            e##name(env, op1, op2));                     \
1469     }
1470 /* evfststlt */
1471 HELPER_VECTOR_SPE_CMP(fststlt);
1472 /* evfststgt */
1473 HELPER_VECTOR_SPE_CMP(fststgt);
1474 /* evfststeq */
1475 HELPER_VECTOR_SPE_CMP(fststeq);
1476 /* evfscmplt */
1477 HELPER_VECTOR_SPE_CMP(fscmplt);
1478 /* evfscmpgt */
1479 HELPER_VECTOR_SPE_CMP(fscmpgt);
1480 /* evfscmpeq */
1481 HELPER_VECTOR_SPE_CMP(fscmpeq);
1482
1483 /* Double-precision floating-point conversion */
1484 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1485 {
1486     CPU_DoubleU u;
1487
1488     u.d = int32_to_float64(val, &env->vec_status);
1489
1490     return u.ll;
1491 }
1492
1493 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1494 {
1495     CPU_DoubleU u;
1496
1497     u.d = int64_to_float64(val, &env->vec_status);
1498
1499     return u.ll;
1500 }
1501
1502 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1503 {
1504     CPU_DoubleU u;
1505
1506     u.d = uint32_to_float64(val, &env->vec_status);
1507
1508     return u.ll;
1509 }
1510
1511 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1512 {
1513     CPU_DoubleU u;
1514
1515     u.d = uint64_to_float64(val, &env->vec_status);
1516
1517     return u.ll;
1518 }
1519
1520 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1521 {
1522     CPU_DoubleU u;
1523
1524     u.ll = val;
1525     /* NaN are not treated the same way IEEE 754 does */
1526     if (unlikely(float64_is_any_nan(u.d))) {
1527         return 0;
1528     }
1529
1530     return float64_to_int32(u.d, &env->vec_status);
1531 }
1532
1533 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1534 {
1535     CPU_DoubleU u;
1536
1537     u.ll = val;
1538     /* NaN are not treated the same way IEEE 754 does */
1539     if (unlikely(float64_is_any_nan(u.d))) {
1540         return 0;
1541     }
1542
1543     return float64_to_uint32(u.d, &env->vec_status);
1544 }
1545
1546 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1547 {
1548     CPU_DoubleU u;
1549
1550     u.ll = val;
1551     /* NaN are not treated the same way IEEE 754 does */
1552     if (unlikely(float64_is_any_nan(u.d))) {
1553         return 0;
1554     }
1555
1556     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1557 }
1558
1559 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1560 {
1561     CPU_DoubleU u;
1562
1563     u.ll = val;
1564     /* NaN are not treated the same way IEEE 754 does */
1565     if (unlikely(float64_is_any_nan(u.d))) {
1566         return 0;
1567     }
1568
1569     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1570 }
1571
1572 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1573 {
1574     CPU_DoubleU u;
1575
1576     u.ll = val;
1577     /* NaN are not treated the same way IEEE 754 does */
1578     if (unlikely(float64_is_any_nan(u.d))) {
1579         return 0;
1580     }
1581
1582     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1583 }
1584
1585 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1586 {
1587     CPU_DoubleU u;
1588
1589     u.ll = val;
1590     /* NaN are not treated the same way IEEE 754 does */
1591     if (unlikely(float64_is_any_nan(u.d))) {
1592         return 0;
1593     }
1594
1595     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1596 }
1597
1598 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1599 {
1600     CPU_DoubleU u;
1601     float64 tmp;
1602
1603     u.d = int32_to_float64(val, &env->vec_status);
1604     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1605     u.d = float64_div(u.d, tmp, &env->vec_status);
1606
1607     return u.ll;
1608 }
1609
1610 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1611 {
1612     CPU_DoubleU u;
1613     float64 tmp;
1614
1615     u.d = uint32_to_float64(val, &env->vec_status);
1616     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1617     u.d = float64_div(u.d, tmp, &env->vec_status);
1618
1619     return u.ll;
1620 }
1621
1622 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1623 {
1624     CPU_DoubleU u;
1625     float64 tmp;
1626
1627     u.ll = val;
1628     /* NaN are not treated the same way IEEE 754 does */
1629     if (unlikely(float64_is_any_nan(u.d))) {
1630         return 0;
1631     }
1632     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1633     u.d = float64_mul(u.d, tmp, &env->vec_status);
1634
1635     return float64_to_int32(u.d, &env->vec_status);
1636 }
1637
1638 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1639 {
1640     CPU_DoubleU u;
1641     float64 tmp;
1642
1643     u.ll = val;
1644     /* NaN are not treated the same way IEEE 754 does */
1645     if (unlikely(float64_is_any_nan(u.d))) {
1646         return 0;
1647     }
1648     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1649     u.d = float64_mul(u.d, tmp, &env->vec_status);
1650
1651     return float64_to_uint32(u.d, &env->vec_status);
1652 }
1653
1654 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1655 {
1656     CPU_DoubleU u1;
1657     CPU_FloatU u2;
1658
1659     u1.ll = val;
1660     u2.f = float64_to_float32(u1.d, &env->vec_status);
1661
1662     return u2.l;
1663 }
1664
1665 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1666 {
1667     CPU_DoubleU u2;
1668     CPU_FloatU u1;
1669
1670     u1.l = val;
1671     u2.d = float32_to_float64(u1.f, &env->vec_status);
1672
1673     return u2.ll;
1674 }
1675
1676 /* Double precision fixed-point arithmetic */
1677 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1678 {
1679     CPU_DoubleU u1, u2;
1680
1681     u1.ll = op1;
1682     u2.ll = op2;
1683     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1684     return u1.ll;
1685 }
1686
1687 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1688 {
1689     CPU_DoubleU u1, u2;
1690
1691     u1.ll = op1;
1692     u2.ll = op2;
1693     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1694     return u1.ll;
1695 }
1696
1697 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1698 {
1699     CPU_DoubleU u1, u2;
1700
1701     u1.ll = op1;
1702     u2.ll = op2;
1703     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1704     return u1.ll;
1705 }
1706
1707 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1708 {
1709     CPU_DoubleU u1, u2;
1710
1711     u1.ll = op1;
1712     u2.ll = op2;
1713     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1714     return u1.ll;
1715 }
1716
1717 /* Double precision floating point helpers */
1718 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1719 {
1720     CPU_DoubleU u1, u2;
1721
1722     u1.ll = op1;
1723     u2.ll = op2;
1724     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1725 }
1726
1727 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1728 {
1729     CPU_DoubleU u1, u2;
1730
1731     u1.ll = op1;
1732     u2.ll = op2;
1733     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1734 }
1735
1736 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1737 {
1738     CPU_DoubleU u1, u2;
1739
1740     u1.ll = op1;
1741     u2.ll = op2;
1742     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1743 }
1744
1745 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1746 {
1747     /* XXX: TODO: test special values (NaN, infinites, ...) */
1748     return helper_efdtstlt(env, op1, op2);
1749 }
1750
1751 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1752 {
1753     /* XXX: TODO: test special values (NaN, infinites, ...) */
1754     return helper_efdtstgt(env, op1, op2);
1755 }
1756
1757 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1758 {
1759     /* XXX: TODO: test special values (NaN, infinites, ...) */
1760     return helper_efdtsteq(env, op1, op2);
1761 }
1762
1763 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1764     (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1765      (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1766
1767 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1768 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1769 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1770 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1771 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1772
1773 typedef union _ppc_vsr_t {
1774     uint64_t u64[2];
1775     uint32_t u32[4];
1776     float32 f32[4];
1777     float64 f64[2];
1778 } ppc_vsr_t;
1779
1780 #if defined(HOST_WORDS_BIGENDIAN)
1781 #define VsrW(i) u32[i]
1782 #define VsrD(i) u64[i]
1783 #else
1784 #define VsrW(i) u32[3-(i)]
1785 #define VsrD(i) u64[1-(i)]
1786 #endif
1787
1788 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1789 {
1790     if (n < 32) {
1791         vsr->VsrD(0) = env->fpr[n];
1792         vsr->VsrD(1) = env->vsr[n];
1793     } else {
1794         vsr->u64[0] = env->avr[n-32].u64[0];
1795         vsr->u64[1] = env->avr[n-32].u64[1];
1796     }
1797 }
1798
1799 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1800 {
1801     if (n < 32) {
1802         env->fpr[n] = vsr->VsrD(0);
1803         env->vsr[n] = vsr->VsrD(1);
1804     } else {
1805         env->avr[n-32].u64[0] = vsr->u64[0];
1806         env->avr[n-32].u64[1] = vsr->u64[1];
1807     }
1808 }
1809
1810 #define float64_to_float64(x, env) x
1811
1812
1813 /* VSX_ADD_SUB - VSX floating point add/subract
1814  *   name  - instruction mnemonic
1815  *   op    - operation (add or sub)
1816  *   nels  - number of elements (1, 2 or 4)
1817  *   tp    - type (float32 or float64)
1818  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1819  *   sfprf - set FPRF
1820  */
1821 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1822 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1823 {                                                                            \
1824     ppc_vsr_t xt, xa, xb;                                                    \
1825     int i;                                                                   \
1826                                                                              \
1827     getVSR(xA(opcode), &xa, env);                                            \
1828     getVSR(xB(opcode), &xb, env);                                            \
1829     getVSR(xT(opcode), &xt, env);                                            \
1830     helper_reset_fpstatus(env);                                              \
1831                                                                              \
1832     for (i = 0; i < nels; i++) {                                             \
1833         float_status tstat = env->fp_status;                                 \
1834         set_float_exception_flags(0, &tstat);                                \
1835         xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1836         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1837                                                                              \
1838         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1839             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1840                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1841             } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1842                        tp##_is_signaling_nan(xb.fld)) {                      \
1843                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1844             }                                                                \
1845         }                                                                    \
1846                                                                              \
1847         if (r2sp) {                                                          \
1848             xt.fld = helper_frsp(env, xt.fld);                               \
1849         }                                                                    \
1850                                                                              \
1851         if (sfprf) {                                                         \
1852             helper_compute_fprf(env, xt.fld);                                \
1853         }                                                                    \
1854     }                                                                        \
1855     putVSR(xT(opcode), &xt, env);                                            \
1856     helper_float_check_status(env);                                          \
1857 }
1858
1859 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1860 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1861 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1862 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1863 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1864 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1865 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1866 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1867
1868 /* VSX_MUL - VSX floating point multiply
1869  *   op    - instruction mnemonic
1870  *   nels  - number of elements (1, 2 or 4)
1871  *   tp    - type (float32 or float64)
1872  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1873  *   sfprf - set FPRF
1874  */
1875 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1876 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1877 {                                                                            \
1878     ppc_vsr_t xt, xa, xb;                                                    \
1879     int i;                                                                   \
1880                                                                              \
1881     getVSR(xA(opcode), &xa, env);                                            \
1882     getVSR(xB(opcode), &xb, env);                                            \
1883     getVSR(xT(opcode), &xt, env);                                            \
1884     helper_reset_fpstatus(env);                                              \
1885                                                                              \
1886     for (i = 0; i < nels; i++) {                                             \
1887         float_status tstat = env->fp_status;                                 \
1888         set_float_exception_flags(0, &tstat);                                \
1889         xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1890         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1891                                                                              \
1892         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1893             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1894                 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1895                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1896             } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1897                        tp##_is_signaling_nan(xb.fld)) {                      \
1898                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1899             }                                                                \
1900         }                                                                    \
1901                                                                              \
1902         if (r2sp) {                                                          \
1903             xt.fld = helper_frsp(env, xt.fld);                               \
1904         }                                                                    \
1905                                                                              \
1906         if (sfprf) {                                                         \
1907             helper_compute_fprf(env, xt.fld);                                \
1908         }                                                                    \
1909     }                                                                        \
1910                                                                              \
1911     putVSR(xT(opcode), &xt, env);                                            \
1912     helper_float_check_status(env);                                          \
1913 }
1914
1915 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1916 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1917 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1918 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1919
1920 /* VSX_DIV - VSX floating point divide
1921  *   op    - instruction mnemonic
1922  *   nels  - number of elements (1, 2 or 4)
1923  *   tp    - type (float32 or float64)
1924  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1925  *   sfprf - set FPRF
1926  */
1927 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1928 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1929 {                                                                             \
1930     ppc_vsr_t xt, xa, xb;                                                     \
1931     int i;                                                                    \
1932                                                                               \
1933     getVSR(xA(opcode), &xa, env);                                             \
1934     getVSR(xB(opcode), &xb, env);                                             \
1935     getVSR(xT(opcode), &xt, env);                                             \
1936     helper_reset_fpstatus(env);                                               \
1937                                                                               \
1938     for (i = 0; i < nels; i++) {                                              \
1939         float_status tstat = env->fp_status;                                  \
1940         set_float_exception_flags(0, &tstat);                                 \
1941         xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1942         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1943                                                                               \
1944         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1945             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1946                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1947             } else if (tp##_is_zero(xa.fld) &&                                \
1948                 tp##_is_zero(xb.fld)) {                                       \
1949                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1950             } else if (tp##_is_signaling_nan(xa.fld) ||                       \
1951                 tp##_is_signaling_nan(xb.fld)) {                              \
1952                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1953             }                                                                 \
1954         }                                                                     \
1955                                                                               \
1956         if (r2sp) {                                                           \
1957             xt.fld = helper_frsp(env, xt.fld);                                \
1958         }                                                                     \
1959                                                                               \
1960         if (sfprf) {                                                          \
1961             helper_compute_fprf(env, xt.fld);                                 \
1962         }                                                                     \
1963     }                                                                         \
1964                                                                               \
1965     putVSR(xT(opcode), &xt, env);                                             \
1966     helper_float_check_status(env);                                           \
1967 }
1968
1969 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1970 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1971 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1972 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1973
1974 /* VSX_RE  - VSX floating point reciprocal estimate
1975  *   op    - instruction mnemonic
1976  *   nels  - number of elements (1, 2 or 4)
1977  *   tp    - type (float32 or float64)
1978  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1979  *   sfprf - set FPRF
1980  */
1981 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1982 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1983 {                                                                             \
1984     ppc_vsr_t xt, xb;                                                         \
1985     int i;                                                                    \
1986                                                                               \
1987     getVSR(xB(opcode), &xb, env);                                             \
1988     getVSR(xT(opcode), &xt, env);                                             \
1989     helper_reset_fpstatus(env);                                               \
1990                                                                               \
1991     for (i = 0; i < nels; i++) {                                              \
1992         if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \
1993                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1994         }                                                                     \
1995         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
1996                                                                               \
1997         if (r2sp) {                                                           \
1998             xt.fld = helper_frsp(env, xt.fld);                                \
1999         }                                                                     \
2000                                                                               \
2001         if (sfprf) {                                                          \
2002             helper_compute_fprf(env, xt.fld);                                 \
2003         }                                                                     \
2004     }                                                                         \
2005                                                                               \
2006     putVSR(xT(opcode), &xt, env);                                             \
2007     helper_float_check_status(env);                                           \
2008 }
2009
2010 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2011 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2012 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2013 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2014
2015 /* VSX_SQRT - VSX floating point square root
2016  *   op    - instruction mnemonic
2017  *   nels  - number of elements (1, 2 or 4)
2018  *   tp    - type (float32 or float64)
2019  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2020  *   sfprf - set FPRF
2021  */
2022 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2023 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2024 {                                                                            \
2025     ppc_vsr_t xt, xb;                                                        \
2026     int i;                                                                   \
2027                                                                              \
2028     getVSR(xB(opcode), &xb, env);                                            \
2029     getVSR(xT(opcode), &xt, env);                                            \
2030     helper_reset_fpstatus(env);                                              \
2031                                                                              \
2032     for (i = 0; i < nels; i++) {                                             \
2033         float_status tstat = env->fp_status;                                 \
2034         set_float_exception_flags(0, &tstat);                                \
2035         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2036         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2037                                                                              \
2038         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2039             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2040                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2041             } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2042                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2043             }                                                                \
2044         }                                                                    \
2045                                                                              \
2046         if (r2sp) {                                                          \
2047             xt.fld = helper_frsp(env, xt.fld);                               \
2048         }                                                                    \
2049                                                                              \
2050         if (sfprf) {                                                         \
2051             helper_compute_fprf(env, xt.fld);                                \
2052         }                                                                    \
2053     }                                                                        \
2054                                                                              \
2055     putVSR(xT(opcode), &xt, env);                                            \
2056     helper_float_check_status(env);                                          \
2057 }
2058
2059 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2060 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2061 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2062 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2063
2064 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2065  *   op    - instruction mnemonic
2066  *   nels  - number of elements (1, 2 or 4)
2067  *   tp    - type (float32 or float64)
2068  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2069  *   sfprf - set FPRF
2070  */
2071 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2072 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2073 {                                                                            \
2074     ppc_vsr_t xt, xb;                                                        \
2075     int i;                                                                   \
2076                                                                              \
2077     getVSR(xB(opcode), &xb, env);                                            \
2078     getVSR(xT(opcode), &xt, env);                                            \
2079     helper_reset_fpstatus(env);                                              \
2080                                                                              \
2081     for (i = 0; i < nels; i++) {                                             \
2082         float_status tstat = env->fp_status;                                 \
2083         set_float_exception_flags(0, &tstat);                                \
2084         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2085         xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2086         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2087                                                                              \
2088         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2089             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2090                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2091             } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2092                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2093             }                                                                \
2094         }                                                                    \
2095                                                                              \
2096         if (r2sp) {                                                          \
2097             xt.fld = helper_frsp(env, xt.fld);                               \
2098         }                                                                    \
2099                                                                              \
2100         if (sfprf) {                                                         \
2101             helper_compute_fprf(env, xt.fld);                                \
2102         }                                                                    \
2103     }                                                                        \
2104                                                                              \
2105     putVSR(xT(opcode), &xt, env);                                            \
2106     helper_float_check_status(env);                                          \
2107 }
2108
2109 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2110 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2111 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2112 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2113
2114 /* VSX_TDIV - VSX floating point test for divide
2115  *   op    - instruction mnemonic
2116  *   nels  - number of elements (1, 2 or 4)
2117  *   tp    - type (float32 or float64)
2118  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2119  *   emin  - minimum unbiased exponent
2120  *   emax  - maximum unbiased exponent
2121  *   nbits - number of fraction bits
2122  */
2123 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2124 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2125 {                                                                       \
2126     ppc_vsr_t xa, xb;                                                   \
2127     int i;                                                              \
2128     int fe_flag = 0;                                                    \
2129     int fg_flag = 0;                                                    \
2130                                                                         \
2131     getVSR(xA(opcode), &xa, env);                                       \
2132     getVSR(xB(opcode), &xb, env);                                       \
2133                                                                         \
2134     for (i = 0; i < nels; i++) {                                        \
2135         if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2136                      tp##_is_infinity(xb.fld) ||                        \
2137                      tp##_is_zero(xb.fld))) {                           \
2138             fe_flag = 1;                                                \
2139             fg_flag = 1;                                                \
2140         } else {                                                        \
2141             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2142             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2143                                                                         \
2144             if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2145                          tp##_is_any_nan(xb.fld))) {                    \
2146                 fe_flag = 1;                                            \
2147             } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2148                 fe_flag = 1;                                            \
2149             } else if (!tp##_is_zero(xa.fld) &&                         \
2150                        (((e_a - e_b) >= emax) ||                        \
2151                         ((e_a - e_b) <= (emin+1)) ||                    \
2152                          (e_a <= (emin+nbits)))) {                      \
2153                 fe_flag = 1;                                            \
2154             }                                                           \
2155                                                                         \
2156             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2157                 /* XB is not zero because of the above check and */     \
2158                 /* so must be denormalized.                      */     \
2159                 fg_flag = 1;                                            \
2160             }                                                           \
2161         }                                                               \
2162     }                                                                   \
2163                                                                         \
2164     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2165 }
2166
2167 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2168 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2169 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2170
2171 /* VSX_TSQRT - VSX floating point test for square root
2172  *   op    - instruction mnemonic
2173  *   nels  - number of elements (1, 2 or 4)
2174  *   tp    - type (float32 or float64)
2175  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2176  *   emin  - minimum unbiased exponent
2177  *   emax  - maximum unbiased exponent
2178  *   nbits - number of fraction bits
2179  */
2180 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2181 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2182 {                                                                       \
2183     ppc_vsr_t xa, xb;                                                   \
2184     int i;                                                              \
2185     int fe_flag = 0;                                                    \
2186     int fg_flag = 0;                                                    \
2187                                                                         \
2188     getVSR(xA(opcode), &xa, env);                                       \
2189     getVSR(xB(opcode), &xb, env);                                       \
2190                                                                         \
2191     for (i = 0; i < nels; i++) {                                        \
2192         if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2193                      tp##_is_zero(xb.fld))) {                           \
2194             fe_flag = 1;                                                \
2195             fg_flag = 1;                                                \
2196         } else {                                                        \
2197             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2198                                                                         \
2199             if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2200                 fe_flag = 1;                                            \
2201             } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2202                 fe_flag = 1;                                            \
2203             } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2204                 fe_flag = 1;                                            \
2205             } else if (!tp##_is_zero(xb.fld) &&                         \
2206                       (e_b <= (emin+nbits))) {                          \
2207                 fe_flag = 1;                                            \
2208             }                                                           \
2209                                                                         \
2210             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2211                 /* XB is not zero because of the above check and */     \
2212                 /* therefore must be denormalized.               */     \
2213                 fg_flag = 1;                                            \
2214             }                                                           \
2215         }                                                               \
2216     }                                                                   \
2217                                                                         \
2218     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2219 }
2220
2221 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2222 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2223 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2224
2225 /* VSX_MADD - VSX floating point muliply/add variations
2226  *   op    - instruction mnemonic
2227  *   nels  - number of elements (1, 2 or 4)
2228  *   tp    - type (float32 or float64)
2229  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2230  *   maddflgs - flags for the float*muladd routine that control the
2231  *           various forms (madd, msub, nmadd, nmsub)
2232  *   afrm  - A form (1=A, 0=M)
2233  *   sfprf - set FPRF
2234  */
2235 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2236 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2237 {                                                                             \
2238     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2239     ppc_vsr_t *b, *c;                                                         \
2240     int i;                                                                    \
2241                                                                               \
2242     if (afrm) { /* AxB + T */                                                 \
2243         b = &xb;                                                              \
2244         c = &xt_in;                                                           \
2245     } else { /* AxT + B */                                                    \
2246         b = &xt_in;                                                           \
2247         c = &xb;                                                              \
2248     }                                                                         \
2249                                                                               \
2250     getVSR(xA(opcode), &xa, env);                                             \
2251     getVSR(xB(opcode), &xb, env);                                             \
2252     getVSR(xT(opcode), &xt_in, env);                                          \
2253                                                                               \
2254     xt_out = xt_in;                                                           \
2255                                                                               \
2256     helper_reset_fpstatus(env);                                               \
2257                                                                               \
2258     for (i = 0; i < nels; i++) {                                              \
2259         float_status tstat = env->fp_status;                                  \
2260         set_float_exception_flags(0, &tstat);                                 \
2261         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2262             /* Avoid double rounding errors by rounding the intermediate */   \
2263             /* result to odd.                                            */   \
2264             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2265             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2266                                        maddflgs, &tstat);                     \
2267             xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2268                               float_flag_inexact) != 0;                       \
2269         } else {                                                              \
2270             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2271                                         maddflgs, &tstat);                    \
2272         }                                                                     \
2273         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2274                                                                               \
2275         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2276             if (tp##_is_signaling_nan(xa.fld) ||                              \
2277                 tp##_is_signaling_nan(b->fld) ||                              \
2278                 tp##_is_signaling_nan(c->fld)) {                              \
2279                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2280                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2281             }                                                                 \
2282             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \
2283                 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \
2284                 xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env,       \
2285                     POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2286                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2287             }                                                                 \
2288             if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2289                 ((tp##_is_infinity(xa.fld) ||                                 \
2290                   tp##_is_infinity(b->fld)) &&                                \
2291                   tp##_is_infinity(c->fld))) {                                \
2292                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2293             }                                                                 \
2294         }                                                                     \
2295                                                                               \
2296         if (r2sp) {                                                           \
2297             xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2298         }                                                                     \
2299                                                                               \
2300         if (sfprf) {                                                          \
2301             helper_compute_fprf(env, xt_out.fld);                             \
2302         }                                                                     \
2303     }                                                                         \
2304     putVSR(xT(opcode), &xt_out, env);                                         \
2305     helper_float_check_status(env);                                           \
2306 }
2307
2308 #define MADD_FLGS 0
2309 #define MSUB_FLGS float_muladd_negate_c
2310 #define NMADD_FLGS float_muladd_negate_result
2311 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2312
2313 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2314 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2315 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2316 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2317 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2318 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2319 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2320 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2321
2322 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2323 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2324 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2325 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2326 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2327 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2328 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2329 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2330
2331 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2332 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2333 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2334 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2335 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2336 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2337 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2338 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2339
2340 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2341 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2342 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2343 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2344 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2345 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2346 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2347 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2348
2349 #define VSX_SCALAR_CMP(op, ordered)                                      \
2350 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2351 {                                                                        \
2352     ppc_vsr_t xa, xb;                                                    \
2353     uint32_t cc = 0;                                                     \
2354                                                                          \
2355     getVSR(xA(opcode), &xa, env);                                        \
2356     getVSR(xB(opcode), &xb, env);                                        \
2357                                                                          \
2358     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
2359                  float64_is_any_nan(xb.VsrD(0)))) {                      \
2360         if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \
2361             float64_is_signaling_nan(xb.VsrD(0))) {                      \
2362             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2363         }                                                                \
2364         if (ordered) {                                                   \
2365             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2366         }                                                                \
2367         cc = 1;                                                          \
2368     } else {                                                             \
2369         if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \
2370             cc = 8;                                                      \
2371         } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \
2372                                &env->fp_status)) { \
2373             cc = 4;                                                      \
2374         } else {                                                         \
2375             cc = 2;                                                      \
2376         }                                                                \
2377     }                                                                    \
2378                                                                          \
2379     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2380     env->fpscr |= cc << FPSCR_FPRF;                                      \
2381     env->crf[BF(opcode)] = cc;                                           \
2382                                                                          \
2383     helper_float_check_status(env);                                      \
2384 }
2385
2386 VSX_SCALAR_CMP(xscmpodp, 1)
2387 VSX_SCALAR_CMP(xscmpudp, 0)
2388
2389 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2390  *   name  - instruction mnemonic
2391  *   op    - operation (max or min)
2392  *   nels  - number of elements (1, 2 or 4)
2393  *   tp    - type (float32 or float64)
2394  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2395  */
2396 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2397 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2398 {                                                                             \
2399     ppc_vsr_t xt, xa, xb;                                                     \
2400     int i;                                                                    \
2401                                                                               \
2402     getVSR(xA(opcode), &xa, env);                                             \
2403     getVSR(xB(opcode), &xb, env);                                             \
2404     getVSR(xT(opcode), &xt, env);                                             \
2405                                                                               \
2406     for (i = 0; i < nels; i++) {                                              \
2407         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2408         if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \
2409                      tp##_is_signaling_nan(xb.fld))) {                        \
2410             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2411         }                                                                     \
2412     }                                                                         \
2413                                                                               \
2414     putVSR(xT(opcode), &xt, env);                                             \
2415     helper_float_check_status(env);                                           \
2416 }
2417
2418 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2419 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2420 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2421 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2422 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2423 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2424
2425 /* VSX_CMP - VSX floating point compare
2426  *   op    - instruction mnemonic
2427  *   nels  - number of elements (1, 2 or 4)
2428  *   tp    - type (float32 or float64)
2429  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2430  *   cmp   - comparison operation
2431  *   svxvc - set VXVC bit
2432  */
2433 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \
2434 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2435 {                                                                         \
2436     ppc_vsr_t xt, xa, xb;                                                 \
2437     int i;                                                                \
2438     int all_true = 1;                                                     \
2439     int all_false = 1;                                                    \
2440                                                                           \
2441     getVSR(xA(opcode), &xa, env);                                         \
2442     getVSR(xB(opcode), &xb, env);                                         \
2443     getVSR(xT(opcode), &xt, env);                                         \
2444                                                                           \
2445     for (i = 0; i < nels; i++) {                                          \
2446         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2447                      tp##_is_any_nan(xb.fld))) {                          \
2448             if (tp##_is_signaling_nan(xa.fld) ||                          \
2449                 tp##_is_signaling_nan(xb.fld)) {                          \
2450                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2451             }                                                             \
2452             if (svxvc) {                                                  \
2453                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2454             }                                                             \
2455             xt.fld = 0;                                                   \
2456             all_true = 0;                                                 \
2457         } else {                                                          \
2458             if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) {       \
2459                 xt.fld = -1;                                              \
2460                 all_false = 0;                                            \
2461             } else {                                                      \
2462                 xt.fld = 0;                                               \
2463                 all_true = 0;                                             \
2464             }                                                             \
2465         }                                                                 \
2466     }                                                                     \
2467                                                                           \
2468     putVSR(xT(opcode), &xt, env);                                         \
2469     if ((opcode >> (31-21)) & 1) {                                        \
2470         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2471     }                                                                     \
2472     helper_float_check_status(env);                                       \
2473  }
2474
2475 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2476 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2477 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2478 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2479 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2480 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2481
2482 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2483  *   op    - instruction mnemonic
2484  *   nels  - number of elements (1, 2 or 4)
2485  *   stp   - source type (float32 or float64)
2486  *   ttp   - target type (float32 or float64)
2487  *   sfld  - source vsr_t field
2488  *   tfld  - target vsr_t field (f32 or f64)
2489  *   sfprf - set FPRF
2490  */
2491 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2492 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2493 {                                                                  \
2494     ppc_vsr_t xt, xb;                                              \
2495     int i;                                                         \
2496                                                                    \
2497     getVSR(xB(opcode), &xb, env);                                  \
2498     getVSR(xT(opcode), &xt, env);                                  \
2499                                                                    \
2500     for (i = 0; i < nels; i++) {                                   \
2501         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2502         if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
2503             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2504             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2505         }                                                          \
2506         if (sfprf) {                                               \
2507             helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2508                                 &env->fp_status));                 \
2509         }                                                          \
2510     }                                                              \
2511                                                                    \
2512     putVSR(xT(opcode), &xt, env);                                  \
2513     helper_float_check_status(env);                                \
2514 }
2515
2516 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2517 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2518 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2519 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2520
2521 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2522 {
2523     float_status tstat = env->fp_status;
2524     set_float_exception_flags(0, &tstat);
2525
2526     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2527 }
2528
2529 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2530 {
2531     float_status tstat = env->fp_status;
2532     set_float_exception_flags(0, &tstat);
2533
2534     return float32_to_float64(xb >> 32, &tstat);
2535 }
2536
2537 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2538  *   op    - instruction mnemonic
2539  *   nels  - number of elements (1, 2 or 4)
2540  *   stp   - source type (float32 or float64)
2541  *   ttp   - target type (int32, uint32, int64 or uint64)
2542  *   sfld  - source vsr_t field
2543  *   tfld  - target vsr_t field
2544  *   rnan  - resulting NaN
2545  */
2546 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2547 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2548 {                                                                            \
2549     ppc_vsr_t xt, xb;                                                        \
2550     int i;                                                                   \
2551                                                                              \
2552     getVSR(xB(opcode), &xb, env);                                            \
2553     getVSR(xT(opcode), &xt, env);                                            \
2554                                                                              \
2555     for (i = 0; i < nels; i++) {                                             \
2556         if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2557             if (stp##_is_signaling_nan(xb.sfld)) {                           \
2558                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2559             }                                                                \
2560             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2561             xt.tfld = rnan;                                                  \
2562         } else {                                                             \
2563             xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2564                           &env->fp_status);                                  \
2565             if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2566                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2567             }                                                                \
2568         }                                                                    \
2569     }                                                                        \
2570                                                                              \
2571     putVSR(xT(opcode), &xt, env);                                            \
2572     helper_float_check_status(env);                                          \
2573 }
2574
2575 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2576                   0x8000000000000000ULL)
2577 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2578                   0x80000000U)
2579 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2580 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2581 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2582                   0x8000000000000000ULL)
2583 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2584                   0x80000000U)
2585 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2586 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2587 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2588                   0x8000000000000000ULL)
2589 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2590 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2591 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2592
2593 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2594  *   op    - instruction mnemonic
2595  *   nels  - number of elements (1, 2 or 4)
2596  *   stp   - source type (int32, uint32, int64 or uint64)
2597  *   ttp   - target type (float32 or float64)
2598  *   sfld  - source vsr_t field
2599  *   tfld  - target vsr_t field
2600  *   jdef  - definition of the j index (i or 2*i)
2601  *   sfprf - set FPRF
2602  */
2603 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2604 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2605 {                                                                       \
2606     ppc_vsr_t xt, xb;                                                   \
2607     int i;                                                              \
2608                                                                         \
2609     getVSR(xB(opcode), &xb, env);                                       \
2610     getVSR(xT(opcode), &xt, env);                                       \
2611                                                                         \
2612     for (i = 0; i < nels; i++) {                                        \
2613         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2614         if (r2sp) {                                                     \
2615             xt.tfld = helper_frsp(env, xt.tfld);                        \
2616         }                                                               \
2617         if (sfprf) {                                                    \
2618             helper_compute_fprf(env, xt.tfld);                          \
2619         }                                                               \
2620     }                                                                   \
2621                                                                         \
2622     putVSR(xT(opcode), &xt, env);                                       \
2623     helper_float_check_status(env);                                     \
2624 }
2625
2626 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2627 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2628 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2629 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2630 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2631 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2632 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2633 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2634 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2635 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2636 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2637 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2638
2639 /* For "use current rounding mode", define a value that will not be one of
2640  * the existing rounding model enums.
2641  */
2642 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2643   float_round_up + float_round_to_zero)
2644
2645 /* VSX_ROUND - VSX floating point round
2646  *   op    - instruction mnemonic
2647  *   nels  - number of elements (1, 2 or 4)
2648  *   tp    - type (float32 or float64)
2649  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2650  *   rmode - rounding mode
2651  *   sfprf - set FPRF
2652  */
2653 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2654 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2655 {                                                                      \
2656     ppc_vsr_t xt, xb;                                                  \
2657     int i;                                                             \
2658     getVSR(xB(opcode), &xb, env);                                      \
2659     getVSR(xT(opcode), &xt, env);                                      \
2660                                                                        \
2661     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2662         set_float_rounding_mode(rmode, &env->fp_status);               \
2663     }                                                                  \
2664                                                                        \
2665     for (i = 0; i < nels; i++) {                                       \
2666         if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \
2667             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2668             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
2669         } else {                                                       \
2670             xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
2671         }                                                              \
2672         if (sfprf) {                                                   \
2673             helper_compute_fprf(env, xt.fld);                          \
2674         }                                                              \
2675     }                                                                  \
2676                                                                        \
2677     /* If this is not a "use current rounding mode" instruction,       \
2678      * then inhibit setting of the XX bit and restore rounding         \
2679      * mode from FPSCR */                                              \
2680     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2681         fpscr_set_rounding_mode(env);                                  \
2682         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2683     }                                                                  \
2684                                                                        \
2685     putVSR(xT(opcode), &xt, env);                                      \
2686     helper_float_check_status(env);                                    \
2687 }
2688
2689 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2690 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2691 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2692 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2693 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2694
2695 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2696 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2697 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2698 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2699 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2700
2701 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2702 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2703 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2704 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2705 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2706
2707 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2708 {
2709     helper_reset_fpstatus(env);
2710
2711     uint64_t xt = helper_frsp(env, xb);
2712
2713     helper_compute_fprf(env, xt);
2714     helper_float_check_status(env);
2715     return xt;
2716 }