4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
37 static void sum_vm_events(unsigned long *ret)
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret)
63 EXPORT_SYMBOL_GPL(all_vm_events);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu)
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
94 int calculate_pressure_threshold(struct zone *zone)
97 int watermark_distance;
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111 * Maximum threshold is 125
113 threshold = min(125, threshold);
118 int calculate_normal_threshold(struct zone *zone)
121 int mem; /* memory in 128 MB units */
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
129 * Some sample thresholds:
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158 * Maximum threshold is 125
160 threshold = min(125, threshold);
166 * Refresh the thresholds for each zone.
168 void refresh_zone_stat_thresholds(void)
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
177 threshold = calculate_normal_threshold(zone);
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
229 preempt_disable_rt();
230 x = delta + __this_cpu_read(*p);
232 t = __this_cpu_read(pcp->stat_threshold);
234 if (unlikely(x > t || x < -t)) {
235 zone_page_state_add(x, zone, item);
238 __this_cpu_write(*p, x);
241 EXPORT_SYMBOL(__mod_zone_page_state);
244 * Optimized increment and decrement functions.
246 * These are only for a single page and therefore can take a struct page *
247 * argument instead of struct zone *. This allows the inclusion of the code
248 * generated for page_zone(page) into the optimized functions.
250 * No overflow check is necessary and therefore the differential can be
251 * incremented or decremented in place which may allow the compilers to
252 * generate better code.
253 * The increment or decrement is known and therefore one boundary check can
256 * NOTE: These functions are very performance sensitive. Change only
259 * Some processors have inc/dec instructions that are atomic vs an interrupt.
260 * However, the code must first determine the differential location in a zone
261 * based on the processor number and then inc/dec the counter. There is no
262 * guarantee without disabling preemption that the processor will not change
263 * in between and therefore the atomicity vs. interrupt cannot be exploited
264 * in a useful way here.
266 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
268 struct per_cpu_pageset __percpu *pcp = zone->pageset;
269 s8 __percpu *p = pcp->vm_stat_diff + item;
272 preempt_disable_rt();
273 v = __this_cpu_inc_return(*p);
274 t = __this_cpu_read(pcp->stat_threshold);
275 if (unlikely(v > t)) {
276 s8 overstep = t >> 1;
278 zone_page_state_add(v + overstep, zone, item);
279 __this_cpu_write(*p, -overstep);
284 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
286 __inc_zone_state(page_zone(page), item);
288 EXPORT_SYMBOL(__inc_zone_page_state);
290 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
292 struct per_cpu_pageset __percpu *pcp = zone->pageset;
293 s8 __percpu *p = pcp->vm_stat_diff + item;
296 preempt_disable_rt();
297 v = __this_cpu_dec_return(*p);
298 t = __this_cpu_read(pcp->stat_threshold);
299 if (unlikely(v < - t)) {
300 s8 overstep = t >> 1;
302 zone_page_state_add(v - overstep, zone, item);
303 __this_cpu_write(*p, overstep);
308 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
310 __dec_zone_state(page_zone(page), item);
312 EXPORT_SYMBOL(__dec_zone_page_state);
314 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
316 * If we have cmpxchg_local support then we do not need to incur the overhead
317 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
319 * mod_state() modifies the zone counter state through atomic per cpu
322 * Overstep mode specifies how overstep should handled:
324 * 1 Overstepping half of threshold
325 * -1 Overstepping minus half of threshold
327 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
328 long delta, int overstep_mode)
330 struct per_cpu_pageset __percpu *pcp = zone->pageset;
331 s8 __percpu *p = pcp->vm_stat_diff + item;
335 z = 0; /* overflow to zone counters */
338 * The fetching of the stat_threshold is racy. We may apply
339 * a counter threshold to the wrong the cpu if we get
340 * rescheduled while executing here. However, the next
341 * counter update will apply the threshold again and
342 * therefore bring the counter under the threshold again.
344 * Most of the time the thresholds are the same anyways
345 * for all cpus in a zone.
347 t = this_cpu_read(pcp->stat_threshold);
349 o = this_cpu_read(*p);
352 if (n > t || n < -t) {
353 int os = overstep_mode * (t >> 1) ;
355 /* Overflow must be added to zone counters */
359 } while (this_cpu_cmpxchg(*p, o, n) != o);
362 zone_page_state_add(z, zone, item);
365 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
368 mod_state(zone, item, delta, 0);
370 EXPORT_SYMBOL(mod_zone_page_state);
372 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
374 mod_state(zone, item, 1, 1);
377 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
379 mod_state(page_zone(page), item, 1, 1);
381 EXPORT_SYMBOL(inc_zone_page_state);
383 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
385 mod_state(page_zone(page), item, -1, -1);
387 EXPORT_SYMBOL(dec_zone_page_state);
390 * Use interrupt disable to serialize counter updates
392 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
397 local_irq_save(flags);
398 __mod_zone_page_state(zone, item, delta);
399 local_irq_restore(flags);
401 EXPORT_SYMBOL(mod_zone_page_state);
403 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
407 local_irq_save(flags);
408 __inc_zone_state(zone, item);
409 local_irq_restore(flags);
412 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
417 zone = page_zone(page);
418 local_irq_save(flags);
419 __inc_zone_state(zone, item);
420 local_irq_restore(flags);
422 EXPORT_SYMBOL(inc_zone_page_state);
424 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
428 local_irq_save(flags);
429 __dec_zone_page_state(page, item);
430 local_irq_restore(flags);
432 EXPORT_SYMBOL(dec_zone_page_state);
437 * Fold a differential into the global counters.
438 * Returns the number of counters updated.
440 static int fold_diff(int *diff)
445 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
447 atomic_long_add(diff[i], &vm_stat[i]);
454 * Update the zone counters for the current cpu.
456 * Note that refresh_cpu_vm_stats strives to only access
457 * node local memory. The per cpu pagesets on remote zones are placed
458 * in the memory local to the processor using that pageset. So the
459 * loop over all zones will access a series of cachelines local to
462 * The call to zone_page_state_add updates the cachelines with the
463 * statistics in the remote zone struct as well as the global cachelines
464 * with the global counters. These could cause remote node cache line
465 * bouncing and will have to be only done when necessary.
467 * The function returns the number of global counters updated.
469 static int refresh_cpu_vm_stats(void)
473 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
476 for_each_populated_zone(zone) {
477 struct per_cpu_pageset __percpu *p = zone->pageset;
479 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
482 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
485 atomic_long_add(v, &zone->vm_stat[i]);
488 /* 3 seconds idle till flush */
489 __this_cpu_write(p->expire, 3);
496 * Deal with draining the remote pageset of this
499 * Check if there are pages remaining in this pageset
500 * if not then there is nothing to expire.
502 if (!__this_cpu_read(p->expire) ||
503 !__this_cpu_read(p->pcp.count))
507 * We never drain zones local to this processor.
509 if (zone_to_nid(zone) == numa_node_id()) {
510 __this_cpu_write(p->expire, 0);
514 if (__this_cpu_dec_return(p->expire))
517 if (__this_cpu_read(p->pcp.count)) {
518 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
523 changes += fold_diff(global_diff);
528 * Fold the data for an offline cpu into the global array.
529 * There cannot be any access by the offline cpu and therefore
530 * synchronization is simplified.
532 void cpu_vm_stats_fold(int cpu)
536 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
538 for_each_populated_zone(zone) {
539 struct per_cpu_pageset *p;
541 p = per_cpu_ptr(zone->pageset, cpu);
543 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
544 if (p->vm_stat_diff[i]) {
547 v = p->vm_stat_diff[i];
548 p->vm_stat_diff[i] = 0;
549 atomic_long_add(v, &zone->vm_stat[i]);
554 fold_diff(global_diff);
558 * this is only called if !populated_zone(zone), which implies no other users of
559 * pset->vm_stat_diff[] exsist.
561 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
565 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
566 if (pset->vm_stat_diff[i]) {
567 int v = pset->vm_stat_diff[i];
568 pset->vm_stat_diff[i] = 0;
569 atomic_long_add(v, &zone->vm_stat[i]);
570 atomic_long_add(v, &vm_stat[i]);
577 * zonelist = the list of zones passed to the allocator
578 * z = the zone from which the allocation occurred.
580 * Must be called with interrupts disabled.
582 * When __GFP_OTHER_NODE is set assume the node of the preferred
583 * zone is the local node. This is useful for daemons who allocate
584 * memory on behalf of other processes.
586 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
588 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
589 __inc_zone_state(z, NUMA_HIT);
591 __inc_zone_state(z, NUMA_MISS);
592 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
594 if (z->node == ((flags & __GFP_OTHER_NODE) ?
595 preferred_zone->node : numa_node_id()))
596 __inc_zone_state(z, NUMA_LOCAL);
598 __inc_zone_state(z, NUMA_OTHER);
602 * Determine the per node value of a stat item.
604 unsigned long node_page_state(int node, enum zone_stat_item item)
606 struct zone *zones = NODE_DATA(node)->node_zones;
609 #ifdef CONFIG_ZONE_DMA
610 zone_page_state(&zones[ZONE_DMA], item) +
612 #ifdef CONFIG_ZONE_DMA32
613 zone_page_state(&zones[ZONE_DMA32], item) +
615 #ifdef CONFIG_HIGHMEM
616 zone_page_state(&zones[ZONE_HIGHMEM], item) +
618 zone_page_state(&zones[ZONE_NORMAL], item) +
619 zone_page_state(&zones[ZONE_MOVABLE], item);
624 #ifdef CONFIG_COMPACTION
626 struct contig_page_info {
627 unsigned long free_pages;
628 unsigned long free_blocks_total;
629 unsigned long free_blocks_suitable;
633 * Calculate the number of free pages in a zone, how many contiguous
634 * pages are free and how many are large enough to satisfy an allocation of
635 * the target size. Note that this function makes no attempt to estimate
636 * how many suitable free blocks there *might* be if MOVABLE pages were
637 * migrated. Calculating that is possible, but expensive and can be
638 * figured out from userspace
640 static void fill_contig_page_info(struct zone *zone,
641 unsigned int suitable_order,
642 struct contig_page_info *info)
646 info->free_pages = 0;
647 info->free_blocks_total = 0;
648 info->free_blocks_suitable = 0;
650 for (order = 0; order < MAX_ORDER; order++) {
651 unsigned long blocks;
653 /* Count number of free blocks */
654 blocks = zone->free_area[order].nr_free;
655 info->free_blocks_total += blocks;
657 /* Count free base pages */
658 info->free_pages += blocks << order;
660 /* Count the suitable free blocks */
661 if (order >= suitable_order)
662 info->free_blocks_suitable += blocks <<
663 (order - suitable_order);
668 * A fragmentation index only makes sense if an allocation of a requested
669 * size would fail. If that is true, the fragmentation index indicates
670 * whether external fragmentation or a lack of memory was the problem.
671 * The value can be used to determine if page reclaim or compaction
674 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
676 unsigned long requested = 1UL << order;
678 if (!info->free_blocks_total)
681 /* Fragmentation index only makes sense when a request would fail */
682 if (info->free_blocks_suitable)
686 * Index is between 0 and 1 so return within 3 decimal places
688 * 0 => allocation would fail due to lack of memory
689 * 1 => allocation would fail due to fragmentation
691 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
694 /* Same as __fragmentation index but allocs contig_page_info on stack */
695 int fragmentation_index(struct zone *zone, unsigned int order)
697 struct contig_page_info info;
699 fill_contig_page_info(zone, order, &info);
700 return __fragmentation_index(order, &info);
704 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
705 #ifdef CONFIG_ZONE_DMA
706 #define TEXT_FOR_DMA(xx) xx "_dma",
708 #define TEXT_FOR_DMA(xx)
711 #ifdef CONFIG_ZONE_DMA32
712 #define TEXT_FOR_DMA32(xx) xx "_dma32",
714 #define TEXT_FOR_DMA32(xx)
717 #ifdef CONFIG_HIGHMEM
718 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
720 #define TEXT_FOR_HIGHMEM(xx)
723 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
724 TEXT_FOR_HIGHMEM(xx) xx "_movable",
726 const char * const vmstat_text[] = {
727 /* enum zone_stat_item countes */
741 "nr_slab_reclaimable",
742 "nr_slab_unreclaimable",
743 "nr_page_table_pages",
748 "nr_vmscan_immediate_reclaim",
765 "workingset_refault",
766 "workingset_activate",
767 "workingset_nodereclaim",
768 "nr_anon_transparent_hugepages",
771 /* enum writeback_stat_item counters */
772 "nr_dirty_threshold",
773 "nr_dirty_background_threshold",
775 #ifdef CONFIG_VM_EVENT_COUNTERS
776 /* enum vm_event_item counters */
782 TEXTS_FOR_ZONES("pgalloc")
791 TEXTS_FOR_ZONES("pgrefill")
792 TEXTS_FOR_ZONES("pgsteal_kswapd")
793 TEXTS_FOR_ZONES("pgsteal_direct")
794 TEXTS_FOR_ZONES("pgscan_kswapd")
795 TEXTS_FOR_ZONES("pgscan_direct")
796 "pgscan_direct_throttle",
799 "zone_reclaim_failed",
804 "kswapd_low_wmark_hit_quickly",
805 "kswapd_high_wmark_hit_quickly",
814 #ifdef CONFIG_NUMA_BALANCING
816 "numa_huge_pte_updates",
818 "numa_hint_faults_local",
819 "numa_pages_migrated",
821 #ifdef CONFIG_MIGRATION
825 #ifdef CONFIG_COMPACTION
826 "compact_migrate_scanned",
827 "compact_free_scanned",
834 #ifdef CONFIG_HUGETLB_PAGE
835 "htlb_buddy_alloc_success",
836 "htlb_buddy_alloc_fail",
838 "unevictable_pgs_culled",
839 "unevictable_pgs_scanned",
840 "unevictable_pgs_rescued",
841 "unevictable_pgs_mlocked",
842 "unevictable_pgs_munlocked",
843 "unevictable_pgs_cleared",
844 "unevictable_pgs_stranded",
846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
848 "thp_fault_fallback",
849 "thp_collapse_alloc",
850 "thp_collapse_alloc_failed",
852 "thp_zero_page_alloc",
853 "thp_zero_page_alloc_failed",
855 #ifdef CONFIG_MEMORY_BALLOON
858 #ifdef CONFIG_BALLOON_COMPACTION
861 #endif /* CONFIG_MEMORY_BALLOON */
862 #ifdef CONFIG_DEBUG_TLBFLUSH
864 "nr_tlb_remote_flush",
865 "nr_tlb_remote_flush_received",
866 #endif /* CONFIG_SMP */
867 "nr_tlb_local_flush_all",
868 "nr_tlb_local_flush_one",
869 #endif /* CONFIG_DEBUG_TLBFLUSH */
871 #ifdef CONFIG_DEBUG_VM_VMACACHE
872 "vmacache_find_calls",
873 "vmacache_find_hits",
874 "vmacache_full_flushes",
876 #endif /* CONFIG_VM_EVENTS_COUNTERS */
878 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
881 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
882 defined(CONFIG_PROC_FS)
883 static void *frag_start(struct seq_file *m, loff_t *pos)
888 for (pgdat = first_online_pgdat();
890 pgdat = next_online_pgdat(pgdat))
896 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
898 pg_data_t *pgdat = (pg_data_t *)arg;
901 return next_online_pgdat(pgdat);
904 static void frag_stop(struct seq_file *m, void *arg)
908 /* Walk all the zones in a node and print using a callback */
909 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
910 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
913 struct zone *node_zones = pgdat->node_zones;
916 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
917 if (!populated_zone(zone))
920 spin_lock_irqsave(&zone->lock, flags);
921 print(m, pgdat, zone);
922 spin_unlock_irqrestore(&zone->lock, flags);
927 #ifdef CONFIG_PROC_FS
928 static char * const migratetype_names[MIGRATE_TYPES] = {
936 #ifdef CONFIG_MEMORY_ISOLATION
941 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
946 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
947 for (order = 0; order < MAX_ORDER; ++order)
948 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
953 * This walks the free areas for each zone.
955 static int frag_show(struct seq_file *m, void *arg)
957 pg_data_t *pgdat = (pg_data_t *)arg;
958 walk_zones_in_node(m, pgdat, frag_show_print);
962 static void pagetypeinfo_showfree_print(struct seq_file *m,
963 pg_data_t *pgdat, struct zone *zone)
967 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
968 seq_printf(m, "Node %4d, zone %8s, type %12s ",
971 migratetype_names[mtype]);
972 for (order = 0; order < MAX_ORDER; ++order) {
973 unsigned long freecount = 0;
974 struct free_area *area;
975 struct list_head *curr;
977 area = &(zone->free_area[order]);
979 list_for_each(curr, &area->free_list[mtype])
981 seq_printf(m, "%6lu ", freecount);
987 /* Print out the free pages at each order for each migatetype */
988 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
991 pg_data_t *pgdat = (pg_data_t *)arg;
994 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
995 for (order = 0; order < MAX_ORDER; ++order)
996 seq_printf(m, "%6d ", order);
999 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1004 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1005 pg_data_t *pgdat, struct zone *zone)
1009 unsigned long start_pfn = zone->zone_start_pfn;
1010 unsigned long end_pfn = zone_end_pfn(zone);
1011 unsigned long count[MIGRATE_TYPES] = { 0, };
1013 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1016 if (!pfn_valid(pfn))
1019 page = pfn_to_page(pfn);
1021 /* Watch for unexpected holes punched in the memmap */
1022 if (!memmap_valid_within(pfn, page, zone))
1025 mtype = get_pageblock_migratetype(page);
1027 if (mtype < MIGRATE_TYPES)
1032 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1033 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034 seq_printf(m, "%12lu ", count[mtype]);
1038 /* Print out the free pages at each order for each migratetype */
1039 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1042 pg_data_t *pgdat = (pg_data_t *)arg;
1044 seq_printf(m, "\n%-23s", "Number of blocks type ");
1045 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1046 seq_printf(m, "%12s ", migratetype_names[mtype]);
1048 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1053 #ifdef CONFIG_PAGE_OWNER
1054 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1059 struct page_ext *page_ext;
1060 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1061 unsigned long end_pfn = pfn + zone->spanned_pages;
1062 unsigned long count[MIGRATE_TYPES] = { 0, };
1063 int pageblock_mt, page_mt;
1066 /* Scan block by block. First and last block may be incomplete */
1067 pfn = zone->zone_start_pfn;
1070 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1071 * a zone boundary, it will be double counted between zones. This does
1072 * not matter as the mixed block count will still be correct
1074 for (; pfn < end_pfn; ) {
1075 if (!pfn_valid(pfn)) {
1076 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1080 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1081 block_end_pfn = min(block_end_pfn, end_pfn);
1083 page = pfn_to_page(pfn);
1084 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1086 for (; pfn < block_end_pfn; pfn++) {
1087 if (!pfn_valid_within(pfn))
1090 page = pfn_to_page(pfn);
1091 if (PageBuddy(page)) {
1092 pfn += (1UL << page_order(page)) - 1;
1096 if (PageReserved(page))
1099 page_ext = lookup_page_ext(page);
1101 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1104 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1105 if (pageblock_mt != page_mt) {
1106 if (is_migrate_cma(pageblock_mt))
1107 count[MIGRATE_MOVABLE]++;
1109 count[pageblock_mt]++;
1111 pfn = block_end_pfn;
1114 pfn += (1UL << page_ext->order) - 1;
1119 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1120 for (i = 0; i < MIGRATE_TYPES; i++)
1121 seq_printf(m, "%12lu ", count[i]);
1124 #endif /* CONFIG_PAGE_OWNER */
1127 * Print out the number of pageblocks for each migratetype that contain pages
1128 * of other types. This gives an indication of how well fallbacks are being
1129 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1130 * to determine what is going on
1132 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1134 #ifdef CONFIG_PAGE_OWNER
1137 if (!page_owner_inited)
1140 drain_all_pages(NULL);
1142 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1143 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1144 seq_printf(m, "%12s ", migratetype_names[mtype]);
1147 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1148 #endif /* CONFIG_PAGE_OWNER */
1152 * This prints out statistics in relation to grouping pages by mobility.
1153 * It is expensive to collect so do not constantly read the file.
1155 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1157 pg_data_t *pgdat = (pg_data_t *)arg;
1159 /* check memoryless node */
1160 if (!node_state(pgdat->node_id, N_MEMORY))
1163 seq_printf(m, "Page block order: %d\n", pageblock_order);
1164 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1166 pagetypeinfo_showfree(m, pgdat);
1167 pagetypeinfo_showblockcount(m, pgdat);
1168 pagetypeinfo_showmixedcount(m, pgdat);
1173 static const struct seq_operations fragmentation_op = {
1174 .start = frag_start,
1180 static int fragmentation_open(struct inode *inode, struct file *file)
1182 return seq_open(file, &fragmentation_op);
1185 static const struct file_operations fragmentation_file_operations = {
1186 .open = fragmentation_open,
1188 .llseek = seq_lseek,
1189 .release = seq_release,
1192 static const struct seq_operations pagetypeinfo_op = {
1193 .start = frag_start,
1196 .show = pagetypeinfo_show,
1199 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1201 return seq_open(file, &pagetypeinfo_op);
1204 static const struct file_operations pagetypeinfo_file_ops = {
1205 .open = pagetypeinfo_open,
1207 .llseek = seq_lseek,
1208 .release = seq_release,
1211 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1215 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1225 zone_page_state(zone, NR_FREE_PAGES),
1226 min_wmark_pages(zone),
1227 low_wmark_pages(zone),
1228 high_wmark_pages(zone),
1229 zone_page_state(zone, NR_PAGES_SCANNED),
1230 zone->spanned_pages,
1231 zone->present_pages,
1232 zone->managed_pages);
1234 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1235 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1236 zone_page_state(zone, i));
1239 "\n protection: (%ld",
1240 zone->lowmem_reserve[0]);
1241 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1242 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1246 for_each_online_cpu(i) {
1247 struct per_cpu_pageset *pageset;
1249 pageset = per_cpu_ptr(zone->pageset, i);
1258 pageset->pcp.batch);
1260 seq_printf(m, "\n vm stats threshold: %d",
1261 pageset->stat_threshold);
1265 "\n all_unreclaimable: %u"
1267 "\n inactive_ratio: %u",
1268 !zone_reclaimable(zone),
1269 zone->zone_start_pfn,
1270 zone->inactive_ratio);
1275 * Output information about zones in @pgdat.
1277 static int zoneinfo_show(struct seq_file *m, void *arg)
1279 pg_data_t *pgdat = (pg_data_t *)arg;
1280 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1284 static const struct seq_operations zoneinfo_op = {
1285 .start = frag_start, /* iterate over all zones. The same as in
1289 .show = zoneinfo_show,
1292 static int zoneinfo_open(struct inode *inode, struct file *file)
1294 return seq_open(file, &zoneinfo_op);
1297 static const struct file_operations proc_zoneinfo_file_operations = {
1298 .open = zoneinfo_open,
1300 .llseek = seq_lseek,
1301 .release = seq_release,
1304 enum writeback_stat_item {
1306 NR_DIRTY_BG_THRESHOLD,
1307 NR_VM_WRITEBACK_STAT_ITEMS,
1310 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1313 int i, stat_items_size;
1315 if (*pos >= ARRAY_SIZE(vmstat_text))
1317 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1318 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1320 #ifdef CONFIG_VM_EVENT_COUNTERS
1321 stat_items_size += sizeof(struct vm_event_state);
1324 v = kmalloc(stat_items_size, GFP_KERNEL);
1327 return ERR_PTR(-ENOMEM);
1328 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1329 v[i] = global_page_state(i);
1330 v += NR_VM_ZONE_STAT_ITEMS;
1332 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1333 v + NR_DIRTY_THRESHOLD);
1334 v += NR_VM_WRITEBACK_STAT_ITEMS;
1336 #ifdef CONFIG_VM_EVENT_COUNTERS
1338 v[PGPGIN] /= 2; /* sectors -> kbytes */
1341 return (unsigned long *)m->private + *pos;
1344 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1347 if (*pos >= ARRAY_SIZE(vmstat_text))
1349 return (unsigned long *)m->private + *pos;
1352 static int vmstat_show(struct seq_file *m, void *arg)
1354 unsigned long *l = arg;
1355 unsigned long off = l - (unsigned long *)m->private;
1357 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1361 static void vmstat_stop(struct seq_file *m, void *arg)
1367 static const struct seq_operations vmstat_op = {
1368 .start = vmstat_start,
1369 .next = vmstat_next,
1370 .stop = vmstat_stop,
1371 .show = vmstat_show,
1374 static int vmstat_open(struct inode *inode, struct file *file)
1376 return seq_open(file, &vmstat_op);
1379 static const struct file_operations proc_vmstat_file_operations = {
1380 .open = vmstat_open,
1382 .llseek = seq_lseek,
1383 .release = seq_release,
1385 #endif /* CONFIG_PROC_FS */
1388 static struct workqueue_struct *vmstat_wq;
1389 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1390 int sysctl_stat_interval __read_mostly = HZ;
1391 static cpumask_var_t cpu_stat_off;
1393 static void vmstat_update(struct work_struct *w)
1395 if (refresh_cpu_vm_stats()) {
1397 * Counters were updated so we expect more updates
1398 * to occur in the future. Keep on running the
1399 * update worker thread.
1401 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1402 this_cpu_ptr(&vmstat_work),
1403 round_jiffies_relative(sysctl_stat_interval));
1406 * We did not update any counters so the app may be in
1407 * a mode where it does not cause counter updates.
1408 * We may be uselessly running vmstat_update.
1409 * Defer the checking for differentials to the
1410 * shepherd thread on a different processor.
1414 * Shepherd work thread does not race since it never
1415 * changes the bit if its zero but the cpu
1416 * online / off line code may race if
1417 * worker threads are still allowed during
1418 * shutdown / startup.
1420 r = cpumask_test_and_set_cpu(smp_processor_id(),
1427 * Check if the diffs for a certain cpu indicate that
1428 * an update is needed.
1430 static bool need_update(int cpu)
1434 for_each_populated_zone(zone) {
1435 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1437 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1439 * The fast way of checking if there are any vmstat diffs.
1440 * This works because the diffs are byte sized items.
1442 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1451 * Shepherd worker thread that checks the
1452 * differentials of processors that have their worker
1453 * threads for vm statistics updates disabled because of
1456 static void vmstat_shepherd(struct work_struct *w);
1458 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1460 static void vmstat_shepherd(struct work_struct *w)
1465 /* Check processors whose vmstat worker threads have been disabled */
1466 for_each_cpu(cpu, cpu_stat_off)
1467 if (need_update(cpu) &&
1468 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1470 queue_delayed_work_on(cpu, vmstat_wq,
1471 &per_cpu(vmstat_work, cpu), 0);
1475 schedule_delayed_work(&shepherd,
1476 round_jiffies_relative(sysctl_stat_interval));
1480 static void __init start_shepherd_timer(void)
1484 for_each_possible_cpu(cpu)
1485 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1488 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1490 cpumask_copy(cpu_stat_off, cpu_online_mask);
1492 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1493 schedule_delayed_work(&shepherd,
1494 round_jiffies_relative(sysctl_stat_interval));
1497 static void vmstat_cpu_dead(int node)
1502 for_each_online_cpu(cpu)
1503 if (cpu_to_node(cpu) == node)
1506 node_clear_state(node, N_CPU);
1512 * Use the cpu notifier to insure that the thresholds are recalculated
1515 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1516 unsigned long action,
1519 long cpu = (long)hcpu;
1523 case CPU_ONLINE_FROZEN:
1524 refresh_zone_stat_thresholds();
1525 node_set_state(cpu_to_node(cpu), N_CPU);
1526 cpumask_set_cpu(cpu, cpu_stat_off);
1528 case CPU_DOWN_PREPARE:
1529 case CPU_DOWN_PREPARE_FROZEN:
1530 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1531 cpumask_clear_cpu(cpu, cpu_stat_off);
1533 case CPU_DOWN_FAILED:
1534 case CPU_DOWN_FAILED_FROZEN:
1535 cpumask_set_cpu(cpu, cpu_stat_off);
1538 case CPU_DEAD_FROZEN:
1539 refresh_zone_stat_thresholds();
1540 vmstat_cpu_dead(cpu_to_node(cpu));
1548 static struct notifier_block vmstat_notifier =
1549 { &vmstat_cpuup_callback, NULL, 0 };
1552 static int __init setup_vmstat(void)
1555 cpu_notifier_register_begin();
1556 __register_cpu_notifier(&vmstat_notifier);
1558 start_shepherd_timer();
1559 cpu_notifier_register_done();
1561 #ifdef CONFIG_PROC_FS
1562 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1563 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1564 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1565 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1569 module_init(setup_vmstat)
1571 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1574 * Return an index indicating how much of the available free memory is
1575 * unusable for an allocation of the requested size.
1577 static int unusable_free_index(unsigned int order,
1578 struct contig_page_info *info)
1580 /* No free memory is interpreted as all free memory is unusable */
1581 if (info->free_pages == 0)
1585 * Index should be a value between 0 and 1. Return a value to 3
1588 * 0 => no fragmentation
1589 * 1 => high fragmentation
1591 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1595 static void unusable_show_print(struct seq_file *m,
1596 pg_data_t *pgdat, struct zone *zone)
1600 struct contig_page_info info;
1602 seq_printf(m, "Node %d, zone %8s ",
1605 for (order = 0; order < MAX_ORDER; ++order) {
1606 fill_contig_page_info(zone, order, &info);
1607 index = unusable_free_index(order, &info);
1608 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1615 * Display unusable free space index
1617 * The unusable free space index measures how much of the available free
1618 * memory cannot be used to satisfy an allocation of a given size and is a
1619 * value between 0 and 1. The higher the value, the more of free memory is
1620 * unusable and by implication, the worse the external fragmentation is. This
1621 * can be expressed as a percentage by multiplying by 100.
1623 static int unusable_show(struct seq_file *m, void *arg)
1625 pg_data_t *pgdat = (pg_data_t *)arg;
1627 /* check memoryless node */
1628 if (!node_state(pgdat->node_id, N_MEMORY))
1631 walk_zones_in_node(m, pgdat, unusable_show_print);
1636 static const struct seq_operations unusable_op = {
1637 .start = frag_start,
1640 .show = unusable_show,
1643 static int unusable_open(struct inode *inode, struct file *file)
1645 return seq_open(file, &unusable_op);
1648 static const struct file_operations unusable_file_ops = {
1649 .open = unusable_open,
1651 .llseek = seq_lseek,
1652 .release = seq_release,
1655 static void extfrag_show_print(struct seq_file *m,
1656 pg_data_t *pgdat, struct zone *zone)
1661 /* Alloc on stack as interrupts are disabled for zone walk */
1662 struct contig_page_info info;
1664 seq_printf(m, "Node %d, zone %8s ",
1667 for (order = 0; order < MAX_ORDER; ++order) {
1668 fill_contig_page_info(zone, order, &info);
1669 index = __fragmentation_index(order, &info);
1670 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1677 * Display fragmentation index for orders that allocations would fail for
1679 static int extfrag_show(struct seq_file *m, void *arg)
1681 pg_data_t *pgdat = (pg_data_t *)arg;
1683 walk_zones_in_node(m, pgdat, extfrag_show_print);
1688 static const struct seq_operations extfrag_op = {
1689 .start = frag_start,
1692 .show = extfrag_show,
1695 static int extfrag_open(struct inode *inode, struct file *file)
1697 return seq_open(file, &extfrag_op);
1700 static const struct file_operations extfrag_file_ops = {
1701 .open = extfrag_open,
1703 .llseek = seq_lseek,
1704 .release = seq_release,
1707 static int __init extfrag_debug_init(void)
1709 struct dentry *extfrag_debug_root;
1711 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1712 if (!extfrag_debug_root)
1715 if (!debugfs_create_file("unusable_index", 0444,
1716 extfrag_debug_root, NULL, &unusable_file_ops))
1719 if (!debugfs_create_file("extfrag_index", 0444,
1720 extfrag_debug_root, NULL, &extfrag_file_ops))
1725 debugfs_remove_recursive(extfrag_debug_root);
1729 module_init(extfrag_debug_init);