[fuel-plugin] Rename node_reboot task
[kvmfornfv.git] / kernel / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  *  Copyright (C) 2008-2014 Christoph Lameter
11  */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39         int cpu;
40         int i;
41
42         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44         for_each_online_cpu(cpu) {
45                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48                         ret[i] += this->event[i];
49         }
50 }
51
52 /*
53  * Accumulate the vm event counters across all CPUs.
54  * The result is unavoidably approximate - it can change
55  * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59         get_online_cpus();
60         sum_vm_events(ret);
61         put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66  * Fold the foreign cpu events into our own.
67  *
68  * This is adding to the events on one processor
69  * but keeps the global counts constant.
70  */
71 void vm_events_fold_cpu(int cpu)
72 {
73         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74         int i;
75
76         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77                 count_vm_events(i, fold_state->event[i]);
78                 fold_state->event[i] = 0;
79         }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85  * Manage combined zone based / global counters
86  *
87  * vm_stat contains the global counters
88  */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96         int threshold;
97         int watermark_distance;
98
99         /*
100          * As vmstats are not up to date, there is drift between the estimated
101          * and real values. For high thresholds and a high number of CPUs, it
102          * is possible for the min watermark to be breached while the estimated
103          * value looks fine. The pressure threshold is a reduced value such
104          * that even the maximum amount of drift will not accidentally breach
105          * the min watermark
106          */
107         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110         /*
111          * Maximum threshold is 125
112          */
113         threshold = min(125, threshold);
114
115         return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120         int threshold;
121         int mem;        /* memory in 128 MB units */
122
123         /*
124          * The threshold scales with the number of processors and the amount
125          * of memory per zone. More memory means that we can defer updates for
126          * longer, more processors could lead to more contention.
127          * fls() is used to have a cheap way of logarithmic scaling.
128          *
129          * Some sample thresholds:
130          *
131          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
132          * ------------------------------------------------------------------
133          * 8            1               1       0.9-1 GB        4
134          * 16           2               2       0.9-1 GB        4
135          * 20           2               2       1-2 GB          5
136          * 24           2               2       2-4 GB          6
137          * 28           2               2       4-8 GB          7
138          * 32           2               2       8-16 GB         8
139          * 4            2               2       <128M           1
140          * 30           4               3       2-4 GB          5
141          * 48           4               3       8-16 GB         8
142          * 32           8               4       1-2 GB          4
143          * 32           8               4       0.9-1GB         4
144          * 10           16              5       <128M           1
145          * 40           16              5       900M            4
146          * 70           64              7       2-4 GB          5
147          * 84           64              7       4-8 GB          6
148          * 108          512             9       4-8 GB          6
149          * 125          1024            10      8-16 GB         8
150          * 125          1024            10      16-32 GB        9
151          */
152
153         mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157         /*
158          * Maximum threshold is 125
159          */
160         threshold = min(125, threshold);
161
162         return threshold;
163 }
164
165 /*
166  * Refresh the thresholds for each zone.
167  */
168 void refresh_zone_stat_thresholds(void)
169 {
170         struct zone *zone;
171         int cpu;
172         int threshold;
173
174         for_each_populated_zone(zone) {
175                 unsigned long max_drift, tolerate_drift;
176
177                 threshold = calculate_normal_threshold(zone);
178
179                 for_each_online_cpu(cpu)
180                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181                                                         = threshold;
182
183                 /*
184                  * Only set percpu_drift_mark if there is a danger that
185                  * NR_FREE_PAGES reports the low watermark is ok when in fact
186                  * the min watermark could be breached by an allocation
187                  */
188                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189                 max_drift = num_online_cpus() * threshold;
190                 if (max_drift > tolerate_drift)
191                         zone->percpu_drift_mark = high_wmark_pages(zone) +
192                                         max_drift;
193         }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197                                 int (*calculate_pressure)(struct zone *))
198 {
199         struct zone *zone;
200         int cpu;
201         int threshold;
202         int i;
203
204         for (i = 0; i < pgdat->nr_zones; i++) {
205                 zone = &pgdat->node_zones[i];
206                 if (!zone->percpu_drift_mark)
207                         continue;
208
209                 threshold = (*calculate_pressure)(zone);
210                 for_each_online_cpu(cpu)
211                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212                                                         = threshold;
213         }
214 }
215
216 /*
217  * For use when we know that interrupts are disabled,
218  * or when we know that preemption is disabled and that
219  * particular counter cannot be updated from interrupt context.
220  */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222                            long delta)
223 {
224         struct per_cpu_pageset __percpu *pcp = zone->pageset;
225         s8 __percpu *p = pcp->vm_stat_diff + item;
226         long x;
227         long t;
228
229         preempt_disable_rt();
230         x = delta + __this_cpu_read(*p);
231
232         t = __this_cpu_read(pcp->stat_threshold);
233
234         if (unlikely(x > t || x < -t)) {
235                 zone_page_state_add(x, zone, item);
236                 x = 0;
237         }
238         __this_cpu_write(*p, x);
239         preempt_enable_rt();
240 }
241 EXPORT_SYMBOL(__mod_zone_page_state);
242
243 /*
244  * Optimized increment and decrement functions.
245  *
246  * These are only for a single page and therefore can take a struct page *
247  * argument instead of struct zone *. This allows the inclusion of the code
248  * generated for page_zone(page) into the optimized functions.
249  *
250  * No overflow check is necessary and therefore the differential can be
251  * incremented or decremented in place which may allow the compilers to
252  * generate better code.
253  * The increment or decrement is known and therefore one boundary check can
254  * be omitted.
255  *
256  * NOTE: These functions are very performance sensitive. Change only
257  * with care.
258  *
259  * Some processors have inc/dec instructions that are atomic vs an interrupt.
260  * However, the code must first determine the differential location in a zone
261  * based on the processor number and then inc/dec the counter. There is no
262  * guarantee without disabling preemption that the processor will not change
263  * in between and therefore the atomicity vs. interrupt cannot be exploited
264  * in a useful way here.
265  */
266 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
267 {
268         struct per_cpu_pageset __percpu *pcp = zone->pageset;
269         s8 __percpu *p = pcp->vm_stat_diff + item;
270         s8 v, t;
271
272         preempt_disable_rt();
273         v = __this_cpu_inc_return(*p);
274         t = __this_cpu_read(pcp->stat_threshold);
275         if (unlikely(v > t)) {
276                 s8 overstep = t >> 1;
277
278                 zone_page_state_add(v + overstep, zone, item);
279                 __this_cpu_write(*p, -overstep);
280         }
281         preempt_enable_rt();
282 }
283
284 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
285 {
286         __inc_zone_state(page_zone(page), item);
287 }
288 EXPORT_SYMBOL(__inc_zone_page_state);
289
290 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
291 {
292         struct per_cpu_pageset __percpu *pcp = zone->pageset;
293         s8 __percpu *p = pcp->vm_stat_diff + item;
294         s8 v, t;
295
296         preempt_disable_rt();
297         v = __this_cpu_dec_return(*p);
298         t = __this_cpu_read(pcp->stat_threshold);
299         if (unlikely(v < - t)) {
300                 s8 overstep = t >> 1;
301
302                 zone_page_state_add(v - overstep, zone, item);
303                 __this_cpu_write(*p, overstep);
304         }
305         preempt_enable_rt();
306 }
307
308 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
309 {
310         __dec_zone_state(page_zone(page), item);
311 }
312 EXPORT_SYMBOL(__dec_zone_page_state);
313
314 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
315 /*
316  * If we have cmpxchg_local support then we do not need to incur the overhead
317  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
318  *
319  * mod_state() modifies the zone counter state through atomic per cpu
320  * operations.
321  *
322  * Overstep mode specifies how overstep should handled:
323  *     0       No overstepping
324  *     1       Overstepping half of threshold
325  *     -1      Overstepping minus half of threshold
326 */
327 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
328                              long delta, int overstep_mode)
329 {
330         struct per_cpu_pageset __percpu *pcp = zone->pageset;
331         s8 __percpu *p = pcp->vm_stat_diff + item;
332         long o, n, t, z;
333
334         do {
335                 z = 0;  /* overflow to zone counters */
336
337                 /*
338                  * The fetching of the stat_threshold is racy. We may apply
339                  * a counter threshold to the wrong the cpu if we get
340                  * rescheduled while executing here. However, the next
341                  * counter update will apply the threshold again and
342                  * therefore bring the counter under the threshold again.
343                  *
344                  * Most of the time the thresholds are the same anyways
345                  * for all cpus in a zone.
346                  */
347                 t = this_cpu_read(pcp->stat_threshold);
348
349                 o = this_cpu_read(*p);
350                 n = delta + o;
351
352                 if (n > t || n < -t) {
353                         int os = overstep_mode * (t >> 1) ;
354
355                         /* Overflow must be added to zone counters */
356                         z = n + os;
357                         n = -os;
358                 }
359         } while (this_cpu_cmpxchg(*p, o, n) != o);
360
361         if (z)
362                 zone_page_state_add(z, zone, item);
363 }
364
365 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
366                          long delta)
367 {
368         mod_state(zone, item, delta, 0);
369 }
370 EXPORT_SYMBOL(mod_zone_page_state);
371
372 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
373 {
374         mod_state(zone, item, 1, 1);
375 }
376
377 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379         mod_state(page_zone(page), item, 1, 1);
380 }
381 EXPORT_SYMBOL(inc_zone_page_state);
382
383 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
384 {
385         mod_state(page_zone(page), item, -1, -1);
386 }
387 EXPORT_SYMBOL(dec_zone_page_state);
388 #else
389 /*
390  * Use interrupt disable to serialize counter updates
391  */
392 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
393                          long delta)
394 {
395         unsigned long flags;
396
397         local_irq_save(flags);
398         __mod_zone_page_state(zone, item, delta);
399         local_irq_restore(flags);
400 }
401 EXPORT_SYMBOL(mod_zone_page_state);
402
403 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
404 {
405         unsigned long flags;
406
407         local_irq_save(flags);
408         __inc_zone_state(zone, item);
409         local_irq_restore(flags);
410 }
411
412 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
413 {
414         unsigned long flags;
415         struct zone *zone;
416
417         zone = page_zone(page);
418         local_irq_save(flags);
419         __inc_zone_state(zone, item);
420         local_irq_restore(flags);
421 }
422 EXPORT_SYMBOL(inc_zone_page_state);
423
424 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
425 {
426         unsigned long flags;
427
428         local_irq_save(flags);
429         __dec_zone_page_state(page, item);
430         local_irq_restore(flags);
431 }
432 EXPORT_SYMBOL(dec_zone_page_state);
433 #endif
434
435
436 /*
437  * Fold a differential into the global counters.
438  * Returns the number of counters updated.
439  */
440 static int fold_diff(int *diff)
441 {
442         int i;
443         int changes = 0;
444
445         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
446                 if (diff[i]) {
447                         atomic_long_add(diff[i], &vm_stat[i]);
448                         changes++;
449         }
450         return changes;
451 }
452
453 /*
454  * Update the zone counters for the current cpu.
455  *
456  * Note that refresh_cpu_vm_stats strives to only access
457  * node local memory. The per cpu pagesets on remote zones are placed
458  * in the memory local to the processor using that pageset. So the
459  * loop over all zones will access a series of cachelines local to
460  * the processor.
461  *
462  * The call to zone_page_state_add updates the cachelines with the
463  * statistics in the remote zone struct as well as the global cachelines
464  * with the global counters. These could cause remote node cache line
465  * bouncing and will have to be only done when necessary.
466  *
467  * The function returns the number of global counters updated.
468  */
469 static int refresh_cpu_vm_stats(void)
470 {
471         struct zone *zone;
472         int i;
473         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
474         int changes = 0;
475
476         for_each_populated_zone(zone) {
477                 struct per_cpu_pageset __percpu *p = zone->pageset;
478
479                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
480                         int v;
481
482                         v = this_cpu_xchg(p->vm_stat_diff[i], 0);
483                         if (v) {
484
485                                 atomic_long_add(v, &zone->vm_stat[i]);
486                                 global_diff[i] += v;
487 #ifdef CONFIG_NUMA
488                                 /* 3 seconds idle till flush */
489                                 __this_cpu_write(p->expire, 3);
490 #endif
491                         }
492                 }
493                 cond_resched();
494 #ifdef CONFIG_NUMA
495                 /*
496                  * Deal with draining the remote pageset of this
497                  * processor
498                  *
499                  * Check if there are pages remaining in this pageset
500                  * if not then there is nothing to expire.
501                  */
502                 if (!__this_cpu_read(p->expire) ||
503                                !__this_cpu_read(p->pcp.count))
504                         continue;
505
506                 /*
507                  * We never drain zones local to this processor.
508                  */
509                 if (zone_to_nid(zone) == numa_node_id()) {
510                         __this_cpu_write(p->expire, 0);
511                         continue;
512                 }
513
514                 if (__this_cpu_dec_return(p->expire))
515                         continue;
516
517                 if (__this_cpu_read(p->pcp.count)) {
518                         drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
519                         changes++;
520                 }
521 #endif
522         }
523         changes += fold_diff(global_diff);
524         return changes;
525 }
526
527 /*
528  * Fold the data for an offline cpu into the global array.
529  * There cannot be any access by the offline cpu and therefore
530  * synchronization is simplified.
531  */
532 void cpu_vm_stats_fold(int cpu)
533 {
534         struct zone *zone;
535         int i;
536         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
537
538         for_each_populated_zone(zone) {
539                 struct per_cpu_pageset *p;
540
541                 p = per_cpu_ptr(zone->pageset, cpu);
542
543                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
544                         if (p->vm_stat_diff[i]) {
545                                 int v;
546
547                                 v = p->vm_stat_diff[i];
548                                 p->vm_stat_diff[i] = 0;
549                                 atomic_long_add(v, &zone->vm_stat[i]);
550                                 global_diff[i] += v;
551                         }
552         }
553
554         fold_diff(global_diff);
555 }
556
557 /*
558  * this is only called if !populated_zone(zone), which implies no other users of
559  * pset->vm_stat_diff[] exsist.
560  */
561 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
562 {
563         int i;
564
565         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
566                 if (pset->vm_stat_diff[i]) {
567                         int v = pset->vm_stat_diff[i];
568                         pset->vm_stat_diff[i] = 0;
569                         atomic_long_add(v, &zone->vm_stat[i]);
570                         atomic_long_add(v, &vm_stat[i]);
571                 }
572 }
573 #endif
574
575 #ifdef CONFIG_NUMA
576 /*
577  * zonelist = the list of zones passed to the allocator
578  * z        = the zone from which the allocation occurred.
579  *
580  * Must be called with interrupts disabled.
581  *
582  * When __GFP_OTHER_NODE is set assume the node of the preferred
583  * zone is the local node. This is useful for daemons who allocate
584  * memory on behalf of other processes.
585  */
586 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
587 {
588         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
589                 __inc_zone_state(z, NUMA_HIT);
590         } else {
591                 __inc_zone_state(z, NUMA_MISS);
592                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
593         }
594         if (z->node == ((flags & __GFP_OTHER_NODE) ?
595                         preferred_zone->node : numa_node_id()))
596                 __inc_zone_state(z, NUMA_LOCAL);
597         else
598                 __inc_zone_state(z, NUMA_OTHER);
599 }
600
601 /*
602  * Determine the per node value of a stat item.
603  */
604 unsigned long node_page_state(int node, enum zone_stat_item item)
605 {
606         struct zone *zones = NODE_DATA(node)->node_zones;
607
608         return
609 #ifdef CONFIG_ZONE_DMA
610                 zone_page_state(&zones[ZONE_DMA], item) +
611 #endif
612 #ifdef CONFIG_ZONE_DMA32
613                 zone_page_state(&zones[ZONE_DMA32], item) +
614 #endif
615 #ifdef CONFIG_HIGHMEM
616                 zone_page_state(&zones[ZONE_HIGHMEM], item) +
617 #endif
618                 zone_page_state(&zones[ZONE_NORMAL], item) +
619                 zone_page_state(&zones[ZONE_MOVABLE], item);
620 }
621
622 #endif
623
624 #ifdef CONFIG_COMPACTION
625
626 struct contig_page_info {
627         unsigned long free_pages;
628         unsigned long free_blocks_total;
629         unsigned long free_blocks_suitable;
630 };
631
632 /*
633  * Calculate the number of free pages in a zone, how many contiguous
634  * pages are free and how many are large enough to satisfy an allocation of
635  * the target size. Note that this function makes no attempt to estimate
636  * how many suitable free blocks there *might* be if MOVABLE pages were
637  * migrated. Calculating that is possible, but expensive and can be
638  * figured out from userspace
639  */
640 static void fill_contig_page_info(struct zone *zone,
641                                 unsigned int suitable_order,
642                                 struct contig_page_info *info)
643 {
644         unsigned int order;
645
646         info->free_pages = 0;
647         info->free_blocks_total = 0;
648         info->free_blocks_suitable = 0;
649
650         for (order = 0; order < MAX_ORDER; order++) {
651                 unsigned long blocks;
652
653                 /* Count number of free blocks */
654                 blocks = zone->free_area[order].nr_free;
655                 info->free_blocks_total += blocks;
656
657                 /* Count free base pages */
658                 info->free_pages += blocks << order;
659
660                 /* Count the suitable free blocks */
661                 if (order >= suitable_order)
662                         info->free_blocks_suitable += blocks <<
663                                                 (order - suitable_order);
664         }
665 }
666
667 /*
668  * A fragmentation index only makes sense if an allocation of a requested
669  * size would fail. If that is true, the fragmentation index indicates
670  * whether external fragmentation or a lack of memory was the problem.
671  * The value can be used to determine if page reclaim or compaction
672  * should be used
673  */
674 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
675 {
676         unsigned long requested = 1UL << order;
677
678         if (!info->free_blocks_total)
679                 return 0;
680
681         /* Fragmentation index only makes sense when a request would fail */
682         if (info->free_blocks_suitable)
683                 return -1000;
684
685         /*
686          * Index is between 0 and 1 so return within 3 decimal places
687          *
688          * 0 => allocation would fail due to lack of memory
689          * 1 => allocation would fail due to fragmentation
690          */
691         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
692 }
693
694 /* Same as __fragmentation index but allocs contig_page_info on stack */
695 int fragmentation_index(struct zone *zone, unsigned int order)
696 {
697         struct contig_page_info info;
698
699         fill_contig_page_info(zone, order, &info);
700         return __fragmentation_index(order, &info);
701 }
702 #endif
703
704 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
705 #ifdef CONFIG_ZONE_DMA
706 #define TEXT_FOR_DMA(xx) xx "_dma",
707 #else
708 #define TEXT_FOR_DMA(xx)
709 #endif
710
711 #ifdef CONFIG_ZONE_DMA32
712 #define TEXT_FOR_DMA32(xx) xx "_dma32",
713 #else
714 #define TEXT_FOR_DMA32(xx)
715 #endif
716
717 #ifdef CONFIG_HIGHMEM
718 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
719 #else
720 #define TEXT_FOR_HIGHMEM(xx)
721 #endif
722
723 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
724                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
725
726 const char * const vmstat_text[] = {
727         /* enum zone_stat_item countes */
728         "nr_free_pages",
729         "nr_alloc_batch",
730         "nr_inactive_anon",
731         "nr_active_anon",
732         "nr_inactive_file",
733         "nr_active_file",
734         "nr_unevictable",
735         "nr_mlock",
736         "nr_anon_pages",
737         "nr_mapped",
738         "nr_file_pages",
739         "nr_dirty",
740         "nr_writeback",
741         "nr_slab_reclaimable",
742         "nr_slab_unreclaimable",
743         "nr_page_table_pages",
744         "nr_kernel_stack",
745         "nr_unstable",
746         "nr_bounce",
747         "nr_vmscan_write",
748         "nr_vmscan_immediate_reclaim",
749         "nr_writeback_temp",
750         "nr_isolated_anon",
751         "nr_isolated_file",
752         "nr_shmem",
753         "nr_dirtied",
754         "nr_written",
755         "nr_pages_scanned",
756
757 #ifdef CONFIG_NUMA
758         "numa_hit",
759         "numa_miss",
760         "numa_foreign",
761         "numa_interleave",
762         "numa_local",
763         "numa_other",
764 #endif
765         "workingset_refault",
766         "workingset_activate",
767         "workingset_nodereclaim",
768         "nr_anon_transparent_hugepages",
769         "nr_free_cma",
770
771         /* enum writeback_stat_item counters */
772         "nr_dirty_threshold",
773         "nr_dirty_background_threshold",
774
775 #ifdef CONFIG_VM_EVENT_COUNTERS
776         /* enum vm_event_item counters */
777         "pgpgin",
778         "pgpgout",
779         "pswpin",
780         "pswpout",
781
782         TEXTS_FOR_ZONES("pgalloc")
783
784         "pgfree",
785         "pgactivate",
786         "pgdeactivate",
787
788         "pgfault",
789         "pgmajfault",
790
791         TEXTS_FOR_ZONES("pgrefill")
792         TEXTS_FOR_ZONES("pgsteal_kswapd")
793         TEXTS_FOR_ZONES("pgsteal_direct")
794         TEXTS_FOR_ZONES("pgscan_kswapd")
795         TEXTS_FOR_ZONES("pgscan_direct")
796         "pgscan_direct_throttle",
797
798 #ifdef CONFIG_NUMA
799         "zone_reclaim_failed",
800 #endif
801         "pginodesteal",
802         "slabs_scanned",
803         "kswapd_inodesteal",
804         "kswapd_low_wmark_hit_quickly",
805         "kswapd_high_wmark_hit_quickly",
806         "pageoutrun",
807         "allocstall",
808
809         "pgrotated",
810
811         "drop_pagecache",
812         "drop_slab",
813
814 #ifdef CONFIG_NUMA_BALANCING
815         "numa_pte_updates",
816         "numa_huge_pte_updates",
817         "numa_hint_faults",
818         "numa_hint_faults_local",
819         "numa_pages_migrated",
820 #endif
821 #ifdef CONFIG_MIGRATION
822         "pgmigrate_success",
823         "pgmigrate_fail",
824 #endif
825 #ifdef CONFIG_COMPACTION
826         "compact_migrate_scanned",
827         "compact_free_scanned",
828         "compact_isolated",
829         "compact_stall",
830         "compact_fail",
831         "compact_success",
832 #endif
833
834 #ifdef CONFIG_HUGETLB_PAGE
835         "htlb_buddy_alloc_success",
836         "htlb_buddy_alloc_fail",
837 #endif
838         "unevictable_pgs_culled",
839         "unevictable_pgs_scanned",
840         "unevictable_pgs_rescued",
841         "unevictable_pgs_mlocked",
842         "unevictable_pgs_munlocked",
843         "unevictable_pgs_cleared",
844         "unevictable_pgs_stranded",
845
846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
847         "thp_fault_alloc",
848         "thp_fault_fallback",
849         "thp_collapse_alloc",
850         "thp_collapse_alloc_failed",
851         "thp_split",
852         "thp_zero_page_alloc",
853         "thp_zero_page_alloc_failed",
854 #endif
855 #ifdef CONFIG_MEMORY_BALLOON
856         "balloon_inflate",
857         "balloon_deflate",
858 #ifdef CONFIG_BALLOON_COMPACTION
859         "balloon_migrate",
860 #endif
861 #endif /* CONFIG_MEMORY_BALLOON */
862 #ifdef CONFIG_DEBUG_TLBFLUSH
863 #ifdef CONFIG_SMP
864         "nr_tlb_remote_flush",
865         "nr_tlb_remote_flush_received",
866 #endif /* CONFIG_SMP */
867         "nr_tlb_local_flush_all",
868         "nr_tlb_local_flush_one",
869 #endif /* CONFIG_DEBUG_TLBFLUSH */
870
871 #ifdef CONFIG_DEBUG_VM_VMACACHE
872         "vmacache_find_calls",
873         "vmacache_find_hits",
874         "vmacache_full_flushes",
875 #endif
876 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 };
878 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
879
880
881 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
882      defined(CONFIG_PROC_FS)
883 static void *frag_start(struct seq_file *m, loff_t *pos)
884 {
885         pg_data_t *pgdat;
886         loff_t node = *pos;
887
888         for (pgdat = first_online_pgdat();
889              pgdat && node;
890              pgdat = next_online_pgdat(pgdat))
891                 --node;
892
893         return pgdat;
894 }
895
896 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
897 {
898         pg_data_t *pgdat = (pg_data_t *)arg;
899
900         (*pos)++;
901         return next_online_pgdat(pgdat);
902 }
903
904 static void frag_stop(struct seq_file *m, void *arg)
905 {
906 }
907
908 /* Walk all the zones in a node and print using a callback */
909 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
910                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
911 {
912         struct zone *zone;
913         struct zone *node_zones = pgdat->node_zones;
914         unsigned long flags;
915
916         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
917                 if (!populated_zone(zone))
918                         continue;
919
920                 spin_lock_irqsave(&zone->lock, flags);
921                 print(m, pgdat, zone);
922                 spin_unlock_irqrestore(&zone->lock, flags);
923         }
924 }
925 #endif
926
927 #ifdef CONFIG_PROC_FS
928 static char * const migratetype_names[MIGRATE_TYPES] = {
929         "Unmovable",
930         "Movable",
931         "Reclaimable",
932         "HighAtomic",
933 #ifdef CONFIG_CMA
934         "CMA",
935 #endif
936 #ifdef CONFIG_MEMORY_ISOLATION
937         "Isolate",
938 #endif
939 };
940
941 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
942                                                 struct zone *zone)
943 {
944         int order;
945
946         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
947         for (order = 0; order < MAX_ORDER; ++order)
948                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
949         seq_putc(m, '\n');
950 }
951
952 /*
953  * This walks the free areas for each zone.
954  */
955 static int frag_show(struct seq_file *m, void *arg)
956 {
957         pg_data_t *pgdat = (pg_data_t *)arg;
958         walk_zones_in_node(m, pgdat, frag_show_print);
959         return 0;
960 }
961
962 static void pagetypeinfo_showfree_print(struct seq_file *m,
963                                         pg_data_t *pgdat, struct zone *zone)
964 {
965         int order, mtype;
966
967         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
968                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
969                                         pgdat->node_id,
970                                         zone->name,
971                                         migratetype_names[mtype]);
972                 for (order = 0; order < MAX_ORDER; ++order) {
973                         unsigned long freecount = 0;
974                         struct free_area *area;
975                         struct list_head *curr;
976
977                         area = &(zone->free_area[order]);
978
979                         list_for_each(curr, &area->free_list[mtype])
980                                 freecount++;
981                         seq_printf(m, "%6lu ", freecount);
982                 }
983                 seq_putc(m, '\n');
984         }
985 }
986
987 /* Print out the free pages at each order for each migatetype */
988 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
989 {
990         int order;
991         pg_data_t *pgdat = (pg_data_t *)arg;
992
993         /* Print header */
994         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
995         for (order = 0; order < MAX_ORDER; ++order)
996                 seq_printf(m, "%6d ", order);
997         seq_putc(m, '\n');
998
999         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1000
1001         return 0;
1002 }
1003
1004 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1005                                         pg_data_t *pgdat, struct zone *zone)
1006 {
1007         int mtype;
1008         unsigned long pfn;
1009         unsigned long start_pfn = zone->zone_start_pfn;
1010         unsigned long end_pfn = zone_end_pfn(zone);
1011         unsigned long count[MIGRATE_TYPES] = { 0, };
1012
1013         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1014                 struct page *page;
1015
1016                 if (!pfn_valid(pfn))
1017                         continue;
1018
1019                 page = pfn_to_page(pfn);
1020
1021                 /* Watch for unexpected holes punched in the memmap */
1022                 if (!memmap_valid_within(pfn, page, zone))
1023                         continue;
1024
1025                 mtype = get_pageblock_migratetype(page);
1026
1027                 if (mtype < MIGRATE_TYPES)
1028                         count[mtype]++;
1029         }
1030
1031         /* Print counts */
1032         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1033         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034                 seq_printf(m, "%12lu ", count[mtype]);
1035         seq_putc(m, '\n');
1036 }
1037
1038 /* Print out the free pages at each order for each migratetype */
1039 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1040 {
1041         int mtype;
1042         pg_data_t *pgdat = (pg_data_t *)arg;
1043
1044         seq_printf(m, "\n%-23s", "Number of blocks type ");
1045         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1046                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1047         seq_putc(m, '\n');
1048         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1049
1050         return 0;
1051 }
1052
1053 #ifdef CONFIG_PAGE_OWNER
1054 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1055                                                         pg_data_t *pgdat,
1056                                                         struct zone *zone)
1057 {
1058         struct page *page;
1059         struct page_ext *page_ext;
1060         unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1061         unsigned long end_pfn = pfn + zone->spanned_pages;
1062         unsigned long count[MIGRATE_TYPES] = { 0, };
1063         int pageblock_mt, page_mt;
1064         int i;
1065
1066         /* Scan block by block. First and last block may be incomplete */
1067         pfn = zone->zone_start_pfn;
1068
1069         /*
1070          * Walk the zone in pageblock_nr_pages steps. If a page block spans
1071          * a zone boundary, it will be double counted between zones. This does
1072          * not matter as the mixed block count will still be correct
1073          */
1074         for (; pfn < end_pfn; ) {
1075                 if (!pfn_valid(pfn)) {
1076                         pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1077                         continue;
1078                 }
1079
1080                 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1081                 block_end_pfn = min(block_end_pfn, end_pfn);
1082
1083                 page = pfn_to_page(pfn);
1084                 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1085
1086                 for (; pfn < block_end_pfn; pfn++) {
1087                         if (!pfn_valid_within(pfn))
1088                                 continue;
1089
1090                         page = pfn_to_page(pfn);
1091                         if (PageBuddy(page)) {
1092                                 pfn += (1UL << page_order(page)) - 1;
1093                                 continue;
1094                         }
1095
1096                         if (PageReserved(page))
1097                                 continue;
1098
1099                         page_ext = lookup_page_ext(page);
1100
1101                         if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1102                                 continue;
1103
1104                         page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1105                         if (pageblock_mt != page_mt) {
1106                                 if (is_migrate_cma(pageblock_mt))
1107                                         count[MIGRATE_MOVABLE]++;
1108                                 else
1109                                         count[pageblock_mt]++;
1110
1111                                 pfn = block_end_pfn;
1112                                 break;
1113                         }
1114                         pfn += (1UL << page_ext->order) - 1;
1115                 }
1116         }
1117
1118         /* Print counts */
1119         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1120         for (i = 0; i < MIGRATE_TYPES; i++)
1121                 seq_printf(m, "%12lu ", count[i]);
1122         seq_putc(m, '\n');
1123 }
1124 #endif /* CONFIG_PAGE_OWNER */
1125
1126 /*
1127  * Print out the number of pageblocks for each migratetype that contain pages
1128  * of other types. This gives an indication of how well fallbacks are being
1129  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1130  * to determine what is going on
1131  */
1132 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1133 {
1134 #ifdef CONFIG_PAGE_OWNER
1135         int mtype;
1136
1137         if (!page_owner_inited)
1138                 return;
1139
1140         drain_all_pages(NULL);
1141
1142         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1143         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1144                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1145         seq_putc(m, '\n');
1146
1147         walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1148 #endif /* CONFIG_PAGE_OWNER */
1149 }
1150
1151 /*
1152  * This prints out statistics in relation to grouping pages by mobility.
1153  * It is expensive to collect so do not constantly read the file.
1154  */
1155 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1156 {
1157         pg_data_t *pgdat = (pg_data_t *)arg;
1158
1159         /* check memoryless node */
1160         if (!node_state(pgdat->node_id, N_MEMORY))
1161                 return 0;
1162
1163         seq_printf(m, "Page block order: %d\n", pageblock_order);
1164         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1165         seq_putc(m, '\n');
1166         pagetypeinfo_showfree(m, pgdat);
1167         pagetypeinfo_showblockcount(m, pgdat);
1168         pagetypeinfo_showmixedcount(m, pgdat);
1169
1170         return 0;
1171 }
1172
1173 static const struct seq_operations fragmentation_op = {
1174         .start  = frag_start,
1175         .next   = frag_next,
1176         .stop   = frag_stop,
1177         .show   = frag_show,
1178 };
1179
1180 static int fragmentation_open(struct inode *inode, struct file *file)
1181 {
1182         return seq_open(file, &fragmentation_op);
1183 }
1184
1185 static const struct file_operations fragmentation_file_operations = {
1186         .open           = fragmentation_open,
1187         .read           = seq_read,
1188         .llseek         = seq_lseek,
1189         .release        = seq_release,
1190 };
1191
1192 static const struct seq_operations pagetypeinfo_op = {
1193         .start  = frag_start,
1194         .next   = frag_next,
1195         .stop   = frag_stop,
1196         .show   = pagetypeinfo_show,
1197 };
1198
1199 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1200 {
1201         return seq_open(file, &pagetypeinfo_op);
1202 }
1203
1204 static const struct file_operations pagetypeinfo_file_ops = {
1205         .open           = pagetypeinfo_open,
1206         .read           = seq_read,
1207         .llseek         = seq_lseek,
1208         .release        = seq_release,
1209 };
1210
1211 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1212                                                         struct zone *zone)
1213 {
1214         int i;
1215         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1216         seq_printf(m,
1217                    "\n  pages free     %lu"
1218                    "\n        min      %lu"
1219                    "\n        low      %lu"
1220                    "\n        high     %lu"
1221                    "\n        scanned  %lu"
1222                    "\n        spanned  %lu"
1223                    "\n        present  %lu"
1224                    "\n        managed  %lu",
1225                    zone_page_state(zone, NR_FREE_PAGES),
1226                    min_wmark_pages(zone),
1227                    low_wmark_pages(zone),
1228                    high_wmark_pages(zone),
1229                    zone_page_state(zone, NR_PAGES_SCANNED),
1230                    zone->spanned_pages,
1231                    zone->present_pages,
1232                    zone->managed_pages);
1233
1234         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1235                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1236                                 zone_page_state(zone, i));
1237
1238         seq_printf(m,
1239                    "\n        protection: (%ld",
1240                    zone->lowmem_reserve[0]);
1241         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1242                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1243         seq_printf(m,
1244                    ")"
1245                    "\n  pagesets");
1246         for_each_online_cpu(i) {
1247                 struct per_cpu_pageset *pageset;
1248
1249                 pageset = per_cpu_ptr(zone->pageset, i);
1250                 seq_printf(m,
1251                            "\n    cpu: %i"
1252                            "\n              count: %i"
1253                            "\n              high:  %i"
1254                            "\n              batch: %i",
1255                            i,
1256                            pageset->pcp.count,
1257                            pageset->pcp.high,
1258                            pageset->pcp.batch);
1259 #ifdef CONFIG_SMP
1260                 seq_printf(m, "\n  vm stats threshold: %d",
1261                                 pageset->stat_threshold);
1262 #endif
1263         }
1264         seq_printf(m,
1265                    "\n  all_unreclaimable: %u"
1266                    "\n  start_pfn:         %lu"
1267                    "\n  inactive_ratio:    %u",
1268                    !zone_reclaimable(zone),
1269                    zone->zone_start_pfn,
1270                    zone->inactive_ratio);
1271         seq_putc(m, '\n');
1272 }
1273
1274 /*
1275  * Output information about zones in @pgdat.
1276  */
1277 static int zoneinfo_show(struct seq_file *m, void *arg)
1278 {
1279         pg_data_t *pgdat = (pg_data_t *)arg;
1280         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1281         return 0;
1282 }
1283
1284 static const struct seq_operations zoneinfo_op = {
1285         .start  = frag_start, /* iterate over all zones. The same as in
1286                                * fragmentation. */
1287         .next   = frag_next,
1288         .stop   = frag_stop,
1289         .show   = zoneinfo_show,
1290 };
1291
1292 static int zoneinfo_open(struct inode *inode, struct file *file)
1293 {
1294         return seq_open(file, &zoneinfo_op);
1295 }
1296
1297 static const struct file_operations proc_zoneinfo_file_operations = {
1298         .open           = zoneinfo_open,
1299         .read           = seq_read,
1300         .llseek         = seq_lseek,
1301         .release        = seq_release,
1302 };
1303
1304 enum writeback_stat_item {
1305         NR_DIRTY_THRESHOLD,
1306         NR_DIRTY_BG_THRESHOLD,
1307         NR_VM_WRITEBACK_STAT_ITEMS,
1308 };
1309
1310 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1311 {
1312         unsigned long *v;
1313         int i, stat_items_size;
1314
1315         if (*pos >= ARRAY_SIZE(vmstat_text))
1316                 return NULL;
1317         stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1318                           NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1319
1320 #ifdef CONFIG_VM_EVENT_COUNTERS
1321         stat_items_size += sizeof(struct vm_event_state);
1322 #endif
1323
1324         v = kmalloc(stat_items_size, GFP_KERNEL);
1325         m->private = v;
1326         if (!v)
1327                 return ERR_PTR(-ENOMEM);
1328         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1329                 v[i] = global_page_state(i);
1330         v += NR_VM_ZONE_STAT_ITEMS;
1331
1332         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1333                             v + NR_DIRTY_THRESHOLD);
1334         v += NR_VM_WRITEBACK_STAT_ITEMS;
1335
1336 #ifdef CONFIG_VM_EVENT_COUNTERS
1337         all_vm_events(v);
1338         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1339         v[PGPGOUT] /= 2;
1340 #endif
1341         return (unsigned long *)m->private + *pos;
1342 }
1343
1344 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1345 {
1346         (*pos)++;
1347         if (*pos >= ARRAY_SIZE(vmstat_text))
1348                 return NULL;
1349         return (unsigned long *)m->private + *pos;
1350 }
1351
1352 static int vmstat_show(struct seq_file *m, void *arg)
1353 {
1354         unsigned long *l = arg;
1355         unsigned long off = l - (unsigned long *)m->private;
1356
1357         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1358         return 0;
1359 }
1360
1361 static void vmstat_stop(struct seq_file *m, void *arg)
1362 {
1363         kfree(m->private);
1364         m->private = NULL;
1365 }
1366
1367 static const struct seq_operations vmstat_op = {
1368         .start  = vmstat_start,
1369         .next   = vmstat_next,
1370         .stop   = vmstat_stop,
1371         .show   = vmstat_show,
1372 };
1373
1374 static int vmstat_open(struct inode *inode, struct file *file)
1375 {
1376         return seq_open(file, &vmstat_op);
1377 }
1378
1379 static const struct file_operations proc_vmstat_file_operations = {
1380         .open           = vmstat_open,
1381         .read           = seq_read,
1382         .llseek         = seq_lseek,
1383         .release        = seq_release,
1384 };
1385 #endif /* CONFIG_PROC_FS */
1386
1387 #ifdef CONFIG_SMP
1388 static struct workqueue_struct *vmstat_wq;
1389 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1390 int sysctl_stat_interval __read_mostly = HZ;
1391 static cpumask_var_t cpu_stat_off;
1392
1393 static void vmstat_update(struct work_struct *w)
1394 {
1395         if (refresh_cpu_vm_stats()) {
1396                 /*
1397                  * Counters were updated so we expect more updates
1398                  * to occur in the future. Keep on running the
1399                  * update worker thread.
1400                  */
1401                 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1402                         this_cpu_ptr(&vmstat_work),
1403                         round_jiffies_relative(sysctl_stat_interval));
1404         } else {
1405                 /*
1406                  * We did not update any counters so the app may be in
1407                  * a mode where it does not cause counter updates.
1408                  * We may be uselessly running vmstat_update.
1409                  * Defer the checking for differentials to the
1410                  * shepherd thread on a different processor.
1411                  */
1412                 int r;
1413                 /*
1414                  * Shepherd work thread does not race since it never
1415                  * changes the bit if its zero but the cpu
1416                  * online / off line code may race if
1417                  * worker threads are still allowed during
1418                  * shutdown / startup.
1419                  */
1420                 r = cpumask_test_and_set_cpu(smp_processor_id(),
1421                         cpu_stat_off);
1422                 VM_BUG_ON(r);
1423         }
1424 }
1425
1426 /*
1427  * Check if the diffs for a certain cpu indicate that
1428  * an update is needed.
1429  */
1430 static bool need_update(int cpu)
1431 {
1432         struct zone *zone;
1433
1434         for_each_populated_zone(zone) {
1435                 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1436
1437                 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1438                 /*
1439                  * The fast way of checking if there are any vmstat diffs.
1440                  * This works because the diffs are byte sized items.
1441                  */
1442                 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1443                         return true;
1444
1445         }
1446         return false;
1447 }
1448
1449
1450 /*
1451  * Shepherd worker thread that checks the
1452  * differentials of processors that have their worker
1453  * threads for vm statistics updates disabled because of
1454  * inactivity.
1455  */
1456 static void vmstat_shepherd(struct work_struct *w);
1457
1458 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1459
1460 static void vmstat_shepherd(struct work_struct *w)
1461 {
1462         int cpu;
1463
1464         get_online_cpus();
1465         /* Check processors whose vmstat worker threads have been disabled */
1466         for_each_cpu(cpu, cpu_stat_off)
1467                 if (need_update(cpu) &&
1468                         cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1469
1470                         queue_delayed_work_on(cpu, vmstat_wq,
1471                                 &per_cpu(vmstat_work, cpu), 0);
1472
1473         put_online_cpus();
1474
1475         schedule_delayed_work(&shepherd,
1476                 round_jiffies_relative(sysctl_stat_interval));
1477
1478 }
1479
1480 static void __init start_shepherd_timer(void)
1481 {
1482         int cpu;
1483
1484         for_each_possible_cpu(cpu)
1485                 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1486                         vmstat_update);
1487
1488         if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1489                 BUG();
1490         cpumask_copy(cpu_stat_off, cpu_online_mask);
1491
1492         vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1493         schedule_delayed_work(&shepherd,
1494                 round_jiffies_relative(sysctl_stat_interval));
1495 }
1496
1497 static void vmstat_cpu_dead(int node)
1498 {
1499         int cpu;
1500
1501         get_online_cpus();
1502         for_each_online_cpu(cpu)
1503                 if (cpu_to_node(cpu) == node)
1504                         goto end;
1505
1506         node_clear_state(node, N_CPU);
1507 end:
1508         put_online_cpus();
1509 }
1510
1511 /*
1512  * Use the cpu notifier to insure that the thresholds are recalculated
1513  * when necessary.
1514  */
1515 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1516                 unsigned long action,
1517                 void *hcpu)
1518 {
1519         long cpu = (long)hcpu;
1520
1521         switch (action) {
1522         case CPU_ONLINE:
1523         case CPU_ONLINE_FROZEN:
1524                 refresh_zone_stat_thresholds();
1525                 node_set_state(cpu_to_node(cpu), N_CPU);
1526                 cpumask_set_cpu(cpu, cpu_stat_off);
1527                 break;
1528         case CPU_DOWN_PREPARE:
1529         case CPU_DOWN_PREPARE_FROZEN:
1530                 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1531                 cpumask_clear_cpu(cpu, cpu_stat_off);
1532                 break;
1533         case CPU_DOWN_FAILED:
1534         case CPU_DOWN_FAILED_FROZEN:
1535                 cpumask_set_cpu(cpu, cpu_stat_off);
1536                 break;
1537         case CPU_DEAD:
1538         case CPU_DEAD_FROZEN:
1539                 refresh_zone_stat_thresholds();
1540                 vmstat_cpu_dead(cpu_to_node(cpu));
1541                 break;
1542         default:
1543                 break;
1544         }
1545         return NOTIFY_OK;
1546 }
1547
1548 static struct notifier_block vmstat_notifier =
1549         { &vmstat_cpuup_callback, NULL, 0 };
1550 #endif
1551
1552 static int __init setup_vmstat(void)
1553 {
1554 #ifdef CONFIG_SMP
1555         cpu_notifier_register_begin();
1556         __register_cpu_notifier(&vmstat_notifier);
1557
1558         start_shepherd_timer();
1559         cpu_notifier_register_done();
1560 #endif
1561 #ifdef CONFIG_PROC_FS
1562         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1563         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1564         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1565         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1566 #endif
1567         return 0;
1568 }
1569 module_init(setup_vmstat)
1570
1571 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1572
1573 /*
1574  * Return an index indicating how much of the available free memory is
1575  * unusable for an allocation of the requested size.
1576  */
1577 static int unusable_free_index(unsigned int order,
1578                                 struct contig_page_info *info)
1579 {
1580         /* No free memory is interpreted as all free memory is unusable */
1581         if (info->free_pages == 0)
1582                 return 1000;
1583
1584         /*
1585          * Index should be a value between 0 and 1. Return a value to 3
1586          * decimal places.
1587          *
1588          * 0 => no fragmentation
1589          * 1 => high fragmentation
1590          */
1591         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1592
1593 }
1594
1595 static void unusable_show_print(struct seq_file *m,
1596                                         pg_data_t *pgdat, struct zone *zone)
1597 {
1598         unsigned int order;
1599         int index;
1600         struct contig_page_info info;
1601
1602         seq_printf(m, "Node %d, zone %8s ",
1603                                 pgdat->node_id,
1604                                 zone->name);
1605         for (order = 0; order < MAX_ORDER; ++order) {
1606                 fill_contig_page_info(zone, order, &info);
1607                 index = unusable_free_index(order, &info);
1608                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1609         }
1610
1611         seq_putc(m, '\n');
1612 }
1613
1614 /*
1615  * Display unusable free space index
1616  *
1617  * The unusable free space index measures how much of the available free
1618  * memory cannot be used to satisfy an allocation of a given size and is a
1619  * value between 0 and 1. The higher the value, the more of free memory is
1620  * unusable and by implication, the worse the external fragmentation is. This
1621  * can be expressed as a percentage by multiplying by 100.
1622  */
1623 static int unusable_show(struct seq_file *m, void *arg)
1624 {
1625         pg_data_t *pgdat = (pg_data_t *)arg;
1626
1627         /* check memoryless node */
1628         if (!node_state(pgdat->node_id, N_MEMORY))
1629                 return 0;
1630
1631         walk_zones_in_node(m, pgdat, unusable_show_print);
1632
1633         return 0;
1634 }
1635
1636 static const struct seq_operations unusable_op = {
1637         .start  = frag_start,
1638         .next   = frag_next,
1639         .stop   = frag_stop,
1640         .show   = unusable_show,
1641 };
1642
1643 static int unusable_open(struct inode *inode, struct file *file)
1644 {
1645         return seq_open(file, &unusable_op);
1646 }
1647
1648 static const struct file_operations unusable_file_ops = {
1649         .open           = unusable_open,
1650         .read           = seq_read,
1651         .llseek         = seq_lseek,
1652         .release        = seq_release,
1653 };
1654
1655 static void extfrag_show_print(struct seq_file *m,
1656                                         pg_data_t *pgdat, struct zone *zone)
1657 {
1658         unsigned int order;
1659         int index;
1660
1661         /* Alloc on stack as interrupts are disabled for zone walk */
1662         struct contig_page_info info;
1663
1664         seq_printf(m, "Node %d, zone %8s ",
1665                                 pgdat->node_id,
1666                                 zone->name);
1667         for (order = 0; order < MAX_ORDER; ++order) {
1668                 fill_contig_page_info(zone, order, &info);
1669                 index = __fragmentation_index(order, &info);
1670                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1671         }
1672
1673         seq_putc(m, '\n');
1674 }
1675
1676 /*
1677  * Display fragmentation index for orders that allocations would fail for
1678  */
1679 static int extfrag_show(struct seq_file *m, void *arg)
1680 {
1681         pg_data_t *pgdat = (pg_data_t *)arg;
1682
1683         walk_zones_in_node(m, pgdat, extfrag_show_print);
1684
1685         return 0;
1686 }
1687
1688 static const struct seq_operations extfrag_op = {
1689         .start  = frag_start,
1690         .next   = frag_next,
1691         .stop   = frag_stop,
1692         .show   = extfrag_show,
1693 };
1694
1695 static int extfrag_open(struct inode *inode, struct file *file)
1696 {
1697         return seq_open(file, &extfrag_op);
1698 }
1699
1700 static const struct file_operations extfrag_file_ops = {
1701         .open           = extfrag_open,
1702         .read           = seq_read,
1703         .llseek         = seq_lseek,
1704         .release        = seq_release,
1705 };
1706
1707 static int __init extfrag_debug_init(void)
1708 {
1709         struct dentry *extfrag_debug_root;
1710
1711         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1712         if (!extfrag_debug_root)
1713                 return -ENOMEM;
1714
1715         if (!debugfs_create_file("unusable_index", 0444,
1716                         extfrag_debug_root, NULL, &unusable_file_ops))
1717                 goto fail;
1718
1719         if (!debugfs_create_file("extfrag_index", 0444,
1720                         extfrag_debug_root, NULL, &extfrag_file_ops))
1721                 goto fail;
1722
1723         return 0;
1724 fail:
1725         debugfs_remove_recursive(extfrag_debug_root);
1726         return -ENOMEM;
1727 }
1728
1729 module_init(extfrag_debug_init);
1730 #endif