2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/locallock.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
94 * Array of node states.
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
107 [N_CPU] = { { [0] = 1UL } },
110 EXPORT_SYMBOL(node_states);
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
119 * When calculating the number of globally allowed dirty pages, there
120 * is a certain number of per-zone reserves that should not be
121 * considered dirtyable memory. This is the sum of those reserves
122 * over all existing zones that contribute dirtyable memory.
124 unsigned long dirty_balance_reserve __read_mostly;
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
130 * A cached value of the page's pageblock's migratetype, used when the page is
131 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
132 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
133 * Also the migratetype set in the page does not necessarily match the pcplist
134 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
135 * other index - this ensures that it will be put on the correct CMA freelist.
137 static inline int get_pcppage_migratetype(struct page *page)
142 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
144 page->index = migratetype;
147 #ifdef CONFIG_PM_SLEEP
149 * The following functions are used by the suspend/hibernate code to temporarily
150 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
151 * while devices are suspended. To avoid races with the suspend/hibernate code,
152 * they should always be called with pm_mutex held (gfp_allowed_mask also should
153 * only be modified with pm_mutex held, unless the suspend/hibernate code is
154 * guaranteed not to run in parallel with that modification).
157 static gfp_t saved_gfp_mask;
159 void pm_restore_gfp_mask(void)
161 WARN_ON(!mutex_is_locked(&pm_mutex));
162 if (saved_gfp_mask) {
163 gfp_allowed_mask = saved_gfp_mask;
168 void pm_restrict_gfp_mask(void)
170 WARN_ON(!mutex_is_locked(&pm_mutex));
171 WARN_ON(saved_gfp_mask);
172 saved_gfp_mask = gfp_allowed_mask;
173 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
176 bool pm_suspended_storage(void)
178 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 #endif /* CONFIG_PM_SLEEP */
184 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
185 unsigned int pageblock_order __read_mostly;
188 static void __free_pages_ok(struct page *page, unsigned int order);
191 * results with 256, 32 in the lowmem_reserve sysctl:
192 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
193 * 1G machine -> (16M dma, 784M normal, 224M high)
194 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
195 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
196 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
198 * TBD: should special case ZONE_DMA32 machines here - in those we normally
199 * don't need any ZONE_NORMAL reservation
201 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
202 #ifdef CONFIG_ZONE_DMA
205 #ifdef CONFIG_ZONE_DMA32
208 #ifdef CONFIG_HIGHMEM
214 EXPORT_SYMBOL(totalram_pages);
216 static char * const zone_names[MAX_NR_ZONES] = {
217 #ifdef CONFIG_ZONE_DMA
220 #ifdef CONFIG_ZONE_DMA32
224 #ifdef CONFIG_HIGHMEM
228 #ifdef CONFIG_ZONE_DEVICE
233 static void free_compound_page(struct page *page);
234 compound_page_dtor * const compound_page_dtors[] = {
237 #ifdef CONFIG_HUGETLB_PAGE
242 int min_free_kbytes = 1024;
243 int user_min_free_kbytes = -1;
245 static unsigned long __meminitdata nr_kernel_pages;
246 static unsigned long __meminitdata nr_all_pages;
247 static unsigned long __meminitdata dma_reserve;
249 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
250 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
251 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
252 static unsigned long __initdata required_kernelcore;
253 static unsigned long __initdata required_movablecore;
254 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
256 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
258 EXPORT_SYMBOL(movable_zone);
259 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
262 int nr_node_ids __read_mostly = MAX_NUMNODES;
263 int nr_online_nodes __read_mostly = 1;
264 EXPORT_SYMBOL(nr_node_ids);
265 EXPORT_SYMBOL(nr_online_nodes);
268 static DEFINE_LOCAL_IRQ_LOCK(pa_lock);
270 #ifdef CONFIG_PREEMPT_RT_BASE
271 # define cpu_lock_irqsave(cpu, flags) \
272 local_lock_irqsave_on(pa_lock, flags, cpu)
273 # define cpu_unlock_irqrestore(cpu, flags) \
274 local_unlock_irqrestore_on(pa_lock, flags, cpu)
276 # define cpu_lock_irqsave(cpu, flags) local_irq_save(flags)
277 # define cpu_unlock_irqrestore(cpu, flags) local_irq_restore(flags)
280 int page_group_by_mobility_disabled __read_mostly;
282 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
283 static inline void reset_deferred_meminit(pg_data_t *pgdat)
285 pgdat->first_deferred_pfn = ULONG_MAX;
288 /* Returns true if the struct page for the pfn is uninitialised */
289 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
291 int nid = early_pfn_to_nid(pfn);
293 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
299 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
301 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
308 * Returns false when the remaining initialisation should be deferred until
309 * later in the boot cycle when it can be parallelised.
311 static inline bool update_defer_init(pg_data_t *pgdat,
312 unsigned long pfn, unsigned long zone_end,
313 unsigned long *nr_initialised)
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
319 /* Initialise at least 2G of the highest zone */
321 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
322 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
323 pgdat->first_deferred_pfn = pfn;
330 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 static inline bool early_page_uninitialised(unsigned long pfn)
339 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
353 void set_pageblock_migratetype(struct page *page, int migratetype)
355 if (unlikely(page_group_by_mobility_disabled &&
356 migratetype < MIGRATE_PCPTYPES))
357 migratetype = MIGRATE_UNMOVABLE;
359 set_pageblock_flags_group(page, (unsigned long)migratetype,
360 PB_migrate, PB_migrate_end);
363 #ifdef CONFIG_DEBUG_VM
364 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 unsigned long pfn = page_to_pfn(page);
369 unsigned long sp, start_pfn;
372 seq = zone_span_seqbegin(zone);
373 start_pfn = zone->zone_start_pfn;
374 sp = zone->spanned_pages;
375 if (!zone_spans_pfn(zone, pfn))
377 } while (zone_span_seqretry(zone, seq));
380 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
381 pfn, zone_to_nid(zone), zone->name,
382 start_pfn, start_pfn + sp);
387 static int page_is_consistent(struct zone *zone, struct page *page)
389 if (!pfn_valid_within(page_to_pfn(page)))
391 if (zone != page_zone(page))
397 * Temporary debugging check for pages not lying within a given zone.
399 static int bad_range(struct zone *zone, struct page *page)
401 if (page_outside_zone_boundaries(zone, page))
403 if (!page_is_consistent(zone, page))
409 static inline int bad_range(struct zone *zone, struct page *page)
415 static void bad_page(struct page *page, const char *reason,
416 unsigned long bad_flags)
418 static unsigned long resume;
419 static unsigned long nr_shown;
420 static unsigned long nr_unshown;
422 /* Don't complain about poisoned pages */
423 if (PageHWPoison(page)) {
424 page_mapcount_reset(page); /* remove PageBuddy */
429 * Allow a burst of 60 reports, then keep quiet for that minute;
430 * or allow a steady drip of one report per second.
432 if (nr_shown == 60) {
433 if (time_before(jiffies, resume)) {
439 "BUG: Bad page state: %lu messages suppressed\n",
446 resume = jiffies + 60 * HZ;
448 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
449 current->comm, page_to_pfn(page));
450 dump_page_badflags(page, reason, bad_flags);
455 /* Leave bad fields for debug, except PageBuddy could make trouble */
456 page_mapcount_reset(page); /* remove PageBuddy */
457 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
461 * Higher-order pages are called "compound pages". They are structured thusly:
463 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
465 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
466 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
468 * The first tail page's ->compound_dtor holds the offset in array of compound
469 * page destructors. See compound_page_dtors.
471 * The first tail page's ->compound_order holds the order of allocation.
472 * This usage means that zero-order pages may not be compound.
475 static void free_compound_page(struct page *page)
477 __free_pages_ok(page, compound_order(page));
480 void prep_compound_page(struct page *page, unsigned int order)
483 int nr_pages = 1 << order;
485 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
486 set_compound_order(page, order);
488 for (i = 1; i < nr_pages; i++) {
489 struct page *p = page + i;
490 set_page_count(p, 0);
491 set_compound_head(p, page);
495 #ifdef CONFIG_DEBUG_PAGEALLOC
496 unsigned int _debug_guardpage_minorder;
497 bool _debug_pagealloc_enabled __read_mostly;
498 bool _debug_guardpage_enabled __read_mostly;
500 static int __init early_debug_pagealloc(char *buf)
505 if (strcmp(buf, "on") == 0)
506 _debug_pagealloc_enabled = true;
510 early_param("debug_pagealloc", early_debug_pagealloc);
512 static bool need_debug_guardpage(void)
514 /* If we don't use debug_pagealloc, we don't need guard page */
515 if (!debug_pagealloc_enabled())
521 static void init_debug_guardpage(void)
523 if (!debug_pagealloc_enabled())
526 _debug_guardpage_enabled = true;
529 struct page_ext_operations debug_guardpage_ops = {
530 .need = need_debug_guardpage,
531 .init = init_debug_guardpage,
534 static int __init debug_guardpage_minorder_setup(char *buf)
538 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
539 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
542 _debug_guardpage_minorder = res;
543 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
546 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
548 static inline void set_page_guard(struct zone *zone, struct page *page,
549 unsigned int order, int migratetype)
551 struct page_ext *page_ext;
553 if (!debug_guardpage_enabled())
556 page_ext = lookup_page_ext(page);
557 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
559 INIT_LIST_HEAD(&page->lru);
560 set_page_private(page, order);
561 /* Guard pages are not available for any usage */
562 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
565 static inline void clear_page_guard(struct zone *zone, struct page *page,
566 unsigned int order, int migratetype)
568 struct page_ext *page_ext;
570 if (!debug_guardpage_enabled())
573 page_ext = lookup_page_ext(page);
574 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
576 set_page_private(page, 0);
577 if (!is_migrate_isolate(migratetype))
578 __mod_zone_freepage_state(zone, (1 << order), migratetype);
581 struct page_ext_operations debug_guardpage_ops = { NULL, };
582 static inline void set_page_guard(struct zone *zone, struct page *page,
583 unsigned int order, int migratetype) {}
584 static inline void clear_page_guard(struct zone *zone, struct page *page,
585 unsigned int order, int migratetype) {}
588 static inline void set_page_order(struct page *page, unsigned int order)
590 set_page_private(page, order);
591 __SetPageBuddy(page);
594 static inline void rmv_page_order(struct page *page)
596 __ClearPageBuddy(page);
597 set_page_private(page, 0);
601 * This function checks whether a page is free && is the buddy
602 * we can do coalesce a page and its buddy if
603 * (a) the buddy is not in a hole &&
604 * (b) the buddy is in the buddy system &&
605 * (c) a page and its buddy have the same order &&
606 * (d) a page and its buddy are in the same zone.
608 * For recording whether a page is in the buddy system, we set ->_mapcount
609 * PAGE_BUDDY_MAPCOUNT_VALUE.
610 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
611 * serialized by zone->lock.
613 * For recording page's order, we use page_private(page).
615 static inline int page_is_buddy(struct page *page, struct page *buddy,
618 if (!pfn_valid_within(page_to_pfn(buddy)))
621 if (page_is_guard(buddy) && page_order(buddy) == order) {
622 if (page_zone_id(page) != page_zone_id(buddy))
625 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
630 if (PageBuddy(buddy) && page_order(buddy) == order) {
632 * zone check is done late to avoid uselessly
633 * calculating zone/node ids for pages that could
636 if (page_zone_id(page) != page_zone_id(buddy))
639 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
647 * Freeing function for a buddy system allocator.
649 * The concept of a buddy system is to maintain direct-mapped table
650 * (containing bit values) for memory blocks of various "orders".
651 * The bottom level table contains the map for the smallest allocatable
652 * units of memory (here, pages), and each level above it describes
653 * pairs of units from the levels below, hence, "buddies".
654 * At a high level, all that happens here is marking the table entry
655 * at the bottom level available, and propagating the changes upward
656 * as necessary, plus some accounting needed to play nicely with other
657 * parts of the VM system.
658 * At each level, we keep a list of pages, which are heads of continuous
659 * free pages of length of (1 << order) and marked with _mapcount
660 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
662 * So when we are allocating or freeing one, we can derive the state of the
663 * other. That is, if we allocate a small block, and both were
664 * free, the remainder of the region must be split into blocks.
665 * If a block is freed, and its buddy is also free, then this
666 * triggers coalescing into a block of larger size.
671 static inline void __free_one_page(struct page *page,
673 struct zone *zone, unsigned int order,
676 unsigned long page_idx;
677 unsigned long combined_idx;
678 unsigned long uninitialized_var(buddy_idx);
680 unsigned int max_order;
682 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
684 VM_BUG_ON(!zone_is_initialized(zone));
685 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
687 VM_BUG_ON(migratetype == -1);
688 if (likely(!is_migrate_isolate(migratetype)))
689 __mod_zone_freepage_state(zone, 1 << order, migratetype);
691 page_idx = pfn & ((1 << MAX_ORDER) - 1);
693 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
694 VM_BUG_ON_PAGE(bad_range(zone, page), page);
697 while (order < max_order - 1) {
698 buddy_idx = __find_buddy_index(page_idx, order);
699 buddy = page + (buddy_idx - page_idx);
700 if (!page_is_buddy(page, buddy, order))
703 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
704 * merge with it and move up one order.
706 if (page_is_guard(buddy)) {
707 clear_page_guard(zone, buddy, order, migratetype);
709 list_del(&buddy->lru);
710 zone->free_area[order].nr_free--;
711 rmv_page_order(buddy);
713 combined_idx = buddy_idx & page_idx;
714 page = page + (combined_idx - page_idx);
715 page_idx = combined_idx;
718 if (max_order < MAX_ORDER) {
719 /* If we are here, it means order is >= pageblock_order.
720 * We want to prevent merge between freepages on isolate
721 * pageblock and normal pageblock. Without this, pageblock
722 * isolation could cause incorrect freepage or CMA accounting.
724 * We don't want to hit this code for the more frequent
727 if (unlikely(has_isolate_pageblock(zone))) {
730 buddy_idx = __find_buddy_index(page_idx, order);
731 buddy = page + (buddy_idx - page_idx);
732 buddy_mt = get_pageblock_migratetype(buddy);
734 if (migratetype != buddy_mt
735 && (is_migrate_isolate(migratetype) ||
736 is_migrate_isolate(buddy_mt)))
740 goto continue_merging;
744 set_page_order(page, order);
747 * If this is not the largest possible page, check if the buddy
748 * of the next-highest order is free. If it is, it's possible
749 * that pages are being freed that will coalesce soon. In case,
750 * that is happening, add the free page to the tail of the list
751 * so it's less likely to be used soon and more likely to be merged
752 * as a higher order page
754 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
755 struct page *higher_page, *higher_buddy;
756 combined_idx = buddy_idx & page_idx;
757 higher_page = page + (combined_idx - page_idx);
758 buddy_idx = __find_buddy_index(combined_idx, order + 1);
759 higher_buddy = higher_page + (buddy_idx - combined_idx);
760 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
761 list_add_tail(&page->lru,
762 &zone->free_area[order].free_list[migratetype]);
767 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
769 zone->free_area[order].nr_free++;
772 static inline int free_pages_check(struct page *page)
774 const char *bad_reason = NULL;
775 unsigned long bad_flags = 0;
777 if (unlikely(page_mapcount(page)))
778 bad_reason = "nonzero mapcount";
779 if (unlikely(page->mapping != NULL))
780 bad_reason = "non-NULL mapping";
781 if (unlikely(atomic_read(&page->_count) != 0))
782 bad_reason = "nonzero _count";
783 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
784 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
785 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
788 if (unlikely(page->mem_cgroup))
789 bad_reason = "page still charged to cgroup";
791 if (unlikely(bad_reason)) {
792 bad_page(page, bad_reason, bad_flags);
795 page_cpupid_reset_last(page);
796 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
797 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
802 * Frees a number of pages which have been collected from the pcp lists.
803 * Assumes all pages on list are in same zone, and of same order.
804 * count is the number of pages to free.
806 * If the zone was previously in an "all pages pinned" state then look to
807 * see if this freeing clears that state.
809 * And clear the zone's pages_scanned counter, to hold off the "all pages are
810 * pinned" detection logic.
812 static void free_pcppages_bulk(struct zone *zone, int count,
813 struct list_head *list)
816 unsigned long nr_scanned;
819 spin_lock_irqsave(&zone->lock, flags);
821 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
823 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
825 while (!list_empty(list)) {
826 struct page *page = list_first_entry(list, struct page, lru);
827 int mt; /* migratetype of the to-be-freed page */
829 /* must delete as __free_one_page list manipulates */
830 list_del(&page->lru);
832 mt = get_pcppage_migratetype(page);
833 /* MIGRATE_ISOLATE page should not go to pcplists */
834 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
835 /* Pageblock could have been isolated meanwhile */
836 if (unlikely(has_isolate_pageblock(zone)))
837 mt = get_pageblock_migratetype(page);
839 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
840 trace_mm_page_pcpu_drain(page, 0, mt);
843 WARN_ON(to_free != 0);
844 spin_unlock_irqrestore(&zone->lock, flags);
848 * Moves a number of pages from the PCP lists to free list which
849 * is freed outside of the locked region.
851 * Assumes all pages on list are in same zone, and of same order.
852 * count is the number of pages to free.
854 static void isolate_pcp_pages(int to_free, struct per_cpu_pages *src,
855 struct list_head *dst)
862 struct list_head *list;
865 * Remove pages from lists in a round-robin fashion. A
866 * batch_free count is maintained that is incremented when an
867 * empty list is encountered. This is so more pages are freed
868 * off fuller lists instead of spinning excessively around empty
873 if (++migratetype == MIGRATE_PCPTYPES)
875 list = &src->lists[migratetype];
876 } while (list_empty(list));
878 /* This is the only non-empty list. Free them all. */
879 if (batch_free == MIGRATE_PCPTYPES)
880 batch_free = to_free;
883 page = list_last_entry(list, struct page, lru);
884 list_del(&page->lru);
886 list_add(&page->lru, dst);
887 } while (--to_free && --batch_free && !list_empty(list));
891 static void free_one_page(struct zone *zone,
892 struct page *page, unsigned long pfn,
896 unsigned long nr_scanned;
899 spin_lock_irqsave(&zone->lock, flags);
900 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
902 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
904 if (unlikely(has_isolate_pageblock(zone) ||
905 is_migrate_isolate(migratetype))) {
906 migratetype = get_pfnblock_migratetype(page, pfn);
908 __free_one_page(page, pfn, zone, order, migratetype);
909 spin_unlock_irqrestore(&zone->lock, flags);
912 static int free_tail_pages_check(struct page *head_page, struct page *page)
917 * We rely page->lru.next never has bit 0 set, unless the page
918 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
920 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
922 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
926 if (unlikely(!PageTail(page))) {
927 bad_page(page, "PageTail not set", 0);
930 if (unlikely(compound_head(page) != head_page)) {
931 bad_page(page, "compound_head not consistent", 0);
936 clear_compound_head(page);
940 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
941 unsigned long zone, int nid)
943 set_page_links(page, zone, nid, pfn);
944 init_page_count(page);
945 page_mapcount_reset(page);
946 page_cpupid_reset_last(page);
948 INIT_LIST_HEAD(&page->lru);
949 #ifdef WANT_PAGE_VIRTUAL
950 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
951 if (!is_highmem_idx(zone))
952 set_page_address(page, __va(pfn << PAGE_SHIFT));
956 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
959 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
963 static void init_reserved_page(unsigned long pfn)
968 if (!early_page_uninitialised(pfn))
971 nid = early_pfn_to_nid(pfn);
972 pgdat = NODE_DATA(nid);
974 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
975 struct zone *zone = &pgdat->node_zones[zid];
977 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
980 __init_single_pfn(pfn, zid, nid);
983 static inline void init_reserved_page(unsigned long pfn)
986 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
989 * Initialised pages do not have PageReserved set. This function is
990 * called for each range allocated by the bootmem allocator and
991 * marks the pages PageReserved. The remaining valid pages are later
992 * sent to the buddy page allocator.
994 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
996 unsigned long start_pfn = PFN_DOWN(start);
997 unsigned long end_pfn = PFN_UP(end);
999 for (; start_pfn < end_pfn; start_pfn++) {
1000 if (pfn_valid(start_pfn)) {
1001 struct page *page = pfn_to_page(start_pfn);
1003 init_reserved_page(start_pfn);
1005 /* Avoid false-positive PageTail() */
1006 INIT_LIST_HEAD(&page->lru);
1008 SetPageReserved(page);
1013 static bool free_pages_prepare(struct page *page, unsigned int order)
1015 bool compound = PageCompound(page);
1018 VM_BUG_ON_PAGE(PageTail(page), page);
1019 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1021 trace_mm_page_free(page, order);
1022 kmemcheck_free_shadow(page, order);
1023 kasan_free_pages(page, order);
1026 page->mapping = NULL;
1027 bad += free_pages_check(page);
1028 for (i = 1; i < (1 << order); i++) {
1030 bad += free_tail_pages_check(page, page + i);
1031 bad += free_pages_check(page + i);
1036 reset_page_owner(page, order);
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1044 arch_free_page(page, order);
1045 kernel_map_pages(page, 1 << order, 0);
1050 static void __free_pages_ok(struct page *page, unsigned int order)
1052 unsigned long flags;
1054 unsigned long pfn = page_to_pfn(page);
1056 if (!free_pages_prepare(page, order))
1059 migratetype = get_pfnblock_migratetype(page, pfn);
1060 local_lock_irqsave(pa_lock, flags);
1061 __count_vm_events(PGFREE, 1 << order);
1062 free_one_page(page_zone(page), page, pfn, order, migratetype);
1063 local_unlock_irqrestore(pa_lock, flags);
1066 static void __init __free_pages_boot_core(struct page *page,
1067 unsigned long pfn, unsigned int order)
1069 unsigned int nr_pages = 1 << order;
1070 struct page *p = page;
1074 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1076 __ClearPageReserved(p);
1077 set_page_count(p, 0);
1079 __ClearPageReserved(p);
1080 set_page_count(p, 0);
1082 page_zone(page)->managed_pages += nr_pages;
1083 set_page_refcounted(page);
1084 __free_pages(page, order);
1087 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1088 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1090 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1092 int __meminit early_pfn_to_nid(unsigned long pfn)
1094 static DEFINE_SPINLOCK(early_pfn_lock);
1097 spin_lock(&early_pfn_lock);
1098 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1100 nid = first_online_node;
1101 spin_unlock(&early_pfn_lock);
1107 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1108 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1109 struct mminit_pfnnid_cache *state)
1113 nid = __early_pfn_to_nid(pfn, state);
1114 if (nid >= 0 && nid != node)
1119 /* Only safe to use early in boot when initialisation is single-threaded */
1120 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1122 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1127 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1131 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1139 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1142 if (early_page_uninitialised(pfn))
1144 return __free_pages_boot_core(page, pfn, order);
1147 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1148 static void __init deferred_free_range(struct page *page,
1149 unsigned long pfn, int nr_pages)
1156 /* Free a large naturally-aligned chunk if possible */
1157 if (nr_pages == MAX_ORDER_NR_PAGES &&
1158 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1159 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1160 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1164 for (i = 0; i < nr_pages; i++, page++, pfn++)
1165 __free_pages_boot_core(page, pfn, 0);
1168 /* Completion tracking for deferred_init_memmap() threads */
1169 static atomic_t pgdat_init_n_undone __initdata;
1170 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1172 static inline void __init pgdat_init_report_one_done(void)
1174 if (atomic_dec_and_test(&pgdat_init_n_undone))
1175 complete(&pgdat_init_all_done_comp);
1178 /* Initialise remaining memory on a node */
1179 static int __init deferred_init_memmap(void *data)
1181 pg_data_t *pgdat = data;
1182 int nid = pgdat->node_id;
1183 struct mminit_pfnnid_cache nid_init_state = { };
1184 unsigned long start = jiffies;
1185 unsigned long nr_pages = 0;
1186 unsigned long walk_start, walk_end;
1189 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1190 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1192 if (first_init_pfn == ULONG_MAX) {
1193 pgdat_init_report_one_done();
1197 /* Bind memory initialisation thread to a local node if possible */
1198 if (!cpumask_empty(cpumask))
1199 set_cpus_allowed_ptr(current, cpumask);
1201 /* Sanity check boundaries */
1202 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1203 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1204 pgdat->first_deferred_pfn = ULONG_MAX;
1206 /* Only the highest zone is deferred so find it */
1207 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 zone = pgdat->node_zones + zid;
1209 if (first_init_pfn < zone_end_pfn(zone))
1213 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1214 unsigned long pfn, end_pfn;
1215 struct page *page = NULL;
1216 struct page *free_base_page = NULL;
1217 unsigned long free_base_pfn = 0;
1220 end_pfn = min(walk_end, zone_end_pfn(zone));
1221 pfn = first_init_pfn;
1222 if (pfn < walk_start)
1224 if (pfn < zone->zone_start_pfn)
1225 pfn = zone->zone_start_pfn;
1227 for (; pfn < end_pfn; pfn++) {
1228 if (!pfn_valid_within(pfn))
1232 * Ensure pfn_valid is checked every
1233 * MAX_ORDER_NR_PAGES for memory holes
1235 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1236 if (!pfn_valid(pfn)) {
1242 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1247 /* Minimise pfn page lookups and scheduler checks */
1248 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1251 nr_pages += nr_to_free;
1252 deferred_free_range(free_base_page,
1253 free_base_pfn, nr_to_free);
1254 free_base_page = NULL;
1255 free_base_pfn = nr_to_free = 0;
1257 page = pfn_to_page(pfn);
1262 VM_BUG_ON(page_zone(page) != zone);
1266 __init_single_page(page, pfn, zid, nid);
1267 if (!free_base_page) {
1268 free_base_page = page;
1269 free_base_pfn = pfn;
1274 /* Where possible, batch up pages for a single free */
1277 /* Free the current block of pages to allocator */
1278 nr_pages += nr_to_free;
1279 deferred_free_range(free_base_page, free_base_pfn,
1281 free_base_page = NULL;
1282 free_base_pfn = nr_to_free = 0;
1285 first_init_pfn = max(end_pfn, first_init_pfn);
1288 /* Sanity check that the next zone really is unpopulated */
1289 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1291 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1292 jiffies_to_msecs(jiffies - start));
1294 pgdat_init_report_one_done();
1298 void __init page_alloc_init_late(void)
1302 /* There will be num_node_state(N_MEMORY) threads */
1303 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1304 for_each_node_state(nid, N_MEMORY) {
1305 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1308 /* Block until all are initialised */
1309 wait_for_completion(&pgdat_init_all_done_comp);
1311 /* Reinit limits that are based on free pages after the kernel is up */
1312 files_maxfiles_init();
1314 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1317 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1318 void __init init_cma_reserved_pageblock(struct page *page)
1320 unsigned i = pageblock_nr_pages;
1321 struct page *p = page;
1324 __ClearPageReserved(p);
1325 set_page_count(p, 0);
1328 set_pageblock_migratetype(page, MIGRATE_CMA);
1330 if (pageblock_order >= MAX_ORDER) {
1331 i = pageblock_nr_pages;
1334 set_page_refcounted(p);
1335 __free_pages(p, MAX_ORDER - 1);
1336 p += MAX_ORDER_NR_PAGES;
1337 } while (i -= MAX_ORDER_NR_PAGES);
1339 set_page_refcounted(page);
1340 __free_pages(page, pageblock_order);
1343 adjust_managed_page_count(page, pageblock_nr_pages);
1348 * The order of subdivision here is critical for the IO subsystem.
1349 * Please do not alter this order without good reasons and regression
1350 * testing. Specifically, as large blocks of memory are subdivided,
1351 * the order in which smaller blocks are delivered depends on the order
1352 * they're subdivided in this function. This is the primary factor
1353 * influencing the order in which pages are delivered to the IO
1354 * subsystem according to empirical testing, and this is also justified
1355 * by considering the behavior of a buddy system containing a single
1356 * large block of memory acted on by a series of small allocations.
1357 * This behavior is a critical factor in sglist merging's success.
1361 static inline void expand(struct zone *zone, struct page *page,
1362 int low, int high, struct free_area *area,
1365 unsigned long size = 1 << high;
1367 while (high > low) {
1371 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1373 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1374 debug_guardpage_enabled() &&
1375 high < debug_guardpage_minorder()) {
1377 * Mark as guard pages (or page), that will allow to
1378 * merge back to allocator when buddy will be freed.
1379 * Corresponding page table entries will not be touched,
1380 * pages will stay not present in virtual address space
1382 set_page_guard(zone, &page[size], high, migratetype);
1385 list_add(&page[size].lru, &area->free_list[migratetype]);
1387 set_page_order(&page[size], high);
1392 * This page is about to be returned from the page allocator
1394 static inline int check_new_page(struct page *page)
1396 const char *bad_reason = NULL;
1397 unsigned long bad_flags = 0;
1399 if (unlikely(page_mapcount(page)))
1400 bad_reason = "nonzero mapcount";
1401 if (unlikely(page->mapping != NULL))
1402 bad_reason = "non-NULL mapping";
1403 if (unlikely(atomic_read(&page->_count) != 0))
1404 bad_reason = "nonzero _count";
1405 if (unlikely(page->flags & __PG_HWPOISON)) {
1406 bad_reason = "HWPoisoned (hardware-corrupted)";
1407 bad_flags = __PG_HWPOISON;
1409 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1410 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1411 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1414 if (unlikely(page->mem_cgroup))
1415 bad_reason = "page still charged to cgroup";
1417 if (unlikely(bad_reason)) {
1418 bad_page(page, bad_reason, bad_flags);
1424 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1429 for (i = 0; i < (1 << order); i++) {
1430 struct page *p = page + i;
1431 if (unlikely(check_new_page(p)))
1435 set_page_private(page, 0);
1436 set_page_refcounted(page);
1438 arch_alloc_page(page, order);
1439 kernel_map_pages(page, 1 << order, 1);
1440 kasan_alloc_pages(page, order);
1442 if (gfp_flags & __GFP_ZERO)
1443 for (i = 0; i < (1 << order); i++)
1444 clear_highpage(page + i);
1446 if (order && (gfp_flags & __GFP_COMP))
1447 prep_compound_page(page, order);
1449 set_page_owner(page, order, gfp_flags);
1452 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1453 * allocate the page. The expectation is that the caller is taking
1454 * steps that will free more memory. The caller should avoid the page
1455 * being used for !PFMEMALLOC purposes.
1457 if (alloc_flags & ALLOC_NO_WATERMARKS)
1458 set_page_pfmemalloc(page);
1460 clear_page_pfmemalloc(page);
1466 * Go through the free lists for the given migratetype and remove
1467 * the smallest available page from the freelists
1470 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1473 unsigned int current_order;
1474 struct free_area *area;
1477 /* Find a page of the appropriate size in the preferred list */
1478 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1479 area = &(zone->free_area[current_order]);
1480 if (list_empty(&area->free_list[migratetype]))
1483 page = list_entry(area->free_list[migratetype].next,
1485 list_del(&page->lru);
1486 rmv_page_order(page);
1488 expand(zone, page, order, current_order, area, migratetype);
1489 set_pcppage_migratetype(page, migratetype);
1498 * This array describes the order lists are fallen back to when
1499 * the free lists for the desirable migrate type are depleted
1501 static int fallbacks[MIGRATE_TYPES][4] = {
1502 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1503 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1504 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1506 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1508 #ifdef CONFIG_MEMORY_ISOLATION
1509 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1514 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1517 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1520 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1521 unsigned int order) { return NULL; }
1525 * Move the free pages in a range to the free lists of the requested type.
1526 * Note that start_page and end_pages are not aligned on a pageblock
1527 * boundary. If alignment is required, use move_freepages_block()
1529 int move_freepages(struct zone *zone,
1530 struct page *start_page, struct page *end_page,
1535 int pages_moved = 0;
1537 #ifndef CONFIG_HOLES_IN_ZONE
1539 * page_zone is not safe to call in this context when
1540 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1541 * anyway as we check zone boundaries in move_freepages_block().
1542 * Remove at a later date when no bug reports exist related to
1543 * grouping pages by mobility
1545 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1548 for (page = start_page; page <= end_page;) {
1549 /* Make sure we are not inadvertently changing nodes */
1550 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1552 if (!pfn_valid_within(page_to_pfn(page))) {
1557 if (!PageBuddy(page)) {
1562 order = page_order(page);
1563 list_move(&page->lru,
1564 &zone->free_area[order].free_list[migratetype]);
1566 pages_moved += 1 << order;
1572 int move_freepages_block(struct zone *zone, struct page *page,
1575 unsigned long start_pfn, end_pfn;
1576 struct page *start_page, *end_page;
1578 start_pfn = page_to_pfn(page);
1579 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1580 start_page = pfn_to_page(start_pfn);
1581 end_page = start_page + pageblock_nr_pages - 1;
1582 end_pfn = start_pfn + pageblock_nr_pages - 1;
1584 /* Do not cross zone boundaries */
1585 if (!zone_spans_pfn(zone, start_pfn))
1587 if (!zone_spans_pfn(zone, end_pfn))
1590 return move_freepages(zone, start_page, end_page, migratetype);
1593 static void change_pageblock_range(struct page *pageblock_page,
1594 int start_order, int migratetype)
1596 int nr_pageblocks = 1 << (start_order - pageblock_order);
1598 while (nr_pageblocks--) {
1599 set_pageblock_migratetype(pageblock_page, migratetype);
1600 pageblock_page += pageblock_nr_pages;
1605 * When we are falling back to another migratetype during allocation, try to
1606 * steal extra free pages from the same pageblocks to satisfy further
1607 * allocations, instead of polluting multiple pageblocks.
1609 * If we are stealing a relatively large buddy page, it is likely there will
1610 * be more free pages in the pageblock, so try to steal them all. For
1611 * reclaimable and unmovable allocations, we steal regardless of page size,
1612 * as fragmentation caused by those allocations polluting movable pageblocks
1613 * is worse than movable allocations stealing from unmovable and reclaimable
1616 static bool can_steal_fallback(unsigned int order, int start_mt)
1619 * Leaving this order check is intended, although there is
1620 * relaxed order check in next check. The reason is that
1621 * we can actually steal whole pageblock if this condition met,
1622 * but, below check doesn't guarantee it and that is just heuristic
1623 * so could be changed anytime.
1625 if (order >= pageblock_order)
1628 if (order >= pageblock_order / 2 ||
1629 start_mt == MIGRATE_RECLAIMABLE ||
1630 start_mt == MIGRATE_UNMOVABLE ||
1631 page_group_by_mobility_disabled)
1638 * This function implements actual steal behaviour. If order is large enough,
1639 * we can steal whole pageblock. If not, we first move freepages in this
1640 * pageblock and check whether half of pages are moved or not. If half of
1641 * pages are moved, we can change migratetype of pageblock and permanently
1642 * use it's pages as requested migratetype in the future.
1644 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1647 unsigned int current_order = page_order(page);
1650 /* Take ownership for orders >= pageblock_order */
1651 if (current_order >= pageblock_order) {
1652 change_pageblock_range(page, current_order, start_type);
1656 pages = move_freepages_block(zone, page, start_type);
1658 /* Claim the whole block if over half of it is free */
1659 if (pages >= (1 << (pageblock_order-1)) ||
1660 page_group_by_mobility_disabled)
1661 set_pageblock_migratetype(page, start_type);
1665 * Check whether there is a suitable fallback freepage with requested order.
1666 * If only_stealable is true, this function returns fallback_mt only if
1667 * we can steal other freepages all together. This would help to reduce
1668 * fragmentation due to mixed migratetype pages in one pageblock.
1670 int find_suitable_fallback(struct free_area *area, unsigned int order,
1671 int migratetype, bool only_stealable, bool *can_steal)
1676 if (area->nr_free == 0)
1681 fallback_mt = fallbacks[migratetype][i];
1682 if (fallback_mt == MIGRATE_TYPES)
1685 if (list_empty(&area->free_list[fallback_mt]))
1688 if (can_steal_fallback(order, migratetype))
1691 if (!only_stealable)
1702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1703 * there are no empty page blocks that contain a page with a suitable order
1705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1706 unsigned int alloc_order)
1709 unsigned long max_managed, flags;
1712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1713 * Check is race-prone but harmless.
1715 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1716 if (zone->nr_reserved_highatomic >= max_managed)
1719 spin_lock_irqsave(&zone->lock, flags);
1721 /* Recheck the nr_reserved_highatomic limit under the lock */
1722 if (zone->nr_reserved_highatomic >= max_managed)
1726 mt = get_pageblock_migratetype(page);
1727 if (mt != MIGRATE_HIGHATOMIC &&
1728 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1729 zone->nr_reserved_highatomic += pageblock_nr_pages;
1730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1735 spin_unlock_irqrestore(&zone->lock, flags);
1739 * Used when an allocation is about to fail under memory pressure. This
1740 * potentially hurts the reliability of high-order allocations when under
1741 * intense memory pressure but failed atomic allocations should be easier
1742 * to recover from than an OOM.
1744 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1746 struct zonelist *zonelist = ac->zonelist;
1747 unsigned long flags;
1753 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1755 /* Preserve at least one pageblock */
1756 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1759 spin_lock_irqsave(&zone->lock, flags);
1760 for (order = 0; order < MAX_ORDER; order++) {
1761 struct free_area *area = &(zone->free_area[order]);
1763 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1766 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1770 * It should never happen but changes to locking could
1771 * inadvertently allow a per-cpu drain to add pages
1772 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1773 * and watch for underflows.
1775 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1776 zone->nr_reserved_highatomic);
1779 * Convert to ac->migratetype and avoid the normal
1780 * pageblock stealing heuristics. Minimally, the caller
1781 * is doing the work and needs the pages. More
1782 * importantly, if the block was always converted to
1783 * MIGRATE_UNMOVABLE or another type then the number
1784 * of pageblocks that cannot be completely freed
1787 set_pageblock_migratetype(page, ac->migratetype);
1788 move_freepages_block(zone, page, ac->migratetype);
1789 spin_unlock_irqrestore(&zone->lock, flags);
1792 spin_unlock_irqrestore(&zone->lock, flags);
1796 /* Remove an element from the buddy allocator from the fallback list */
1797 static inline struct page *
1798 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1800 struct free_area *area;
1801 unsigned int current_order;
1806 /* Find the largest possible block of pages in the other list */
1807 for (current_order = MAX_ORDER-1;
1808 current_order >= order && current_order <= MAX_ORDER-1;
1810 area = &(zone->free_area[current_order]);
1811 fallback_mt = find_suitable_fallback(area, current_order,
1812 start_migratetype, false, &can_steal);
1813 if (fallback_mt == -1)
1816 page = list_entry(area->free_list[fallback_mt].next,
1819 steal_suitable_fallback(zone, page, start_migratetype);
1821 /* Remove the page from the freelists */
1823 list_del(&page->lru);
1824 rmv_page_order(page);
1826 expand(zone, page, order, current_order, area,
1829 * The pcppage_migratetype may differ from pageblock's
1830 * migratetype depending on the decisions in
1831 * find_suitable_fallback(). This is OK as long as it does not
1832 * differ for MIGRATE_CMA pageblocks. Those can be used as
1833 * fallback only via special __rmqueue_cma_fallback() function
1835 set_pcppage_migratetype(page, start_migratetype);
1837 trace_mm_page_alloc_extfrag(page, order, current_order,
1838 start_migratetype, fallback_mt);
1847 * Do the hard work of removing an element from the buddy allocator.
1848 * Call me with the zone->lock already held.
1850 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1851 int migratetype, gfp_t gfp_flags)
1855 page = __rmqueue_smallest(zone, order, migratetype);
1856 if (unlikely(!page)) {
1857 if (migratetype == MIGRATE_MOVABLE)
1858 page = __rmqueue_cma_fallback(zone, order);
1861 page = __rmqueue_fallback(zone, order, migratetype);
1864 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1869 * Obtain a specified number of elements from the buddy allocator, all under
1870 * a single hold of the lock, for efficiency. Add them to the supplied list.
1871 * Returns the number of new pages which were placed at *list.
1873 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1874 unsigned long count, struct list_head *list,
1875 int migratetype, bool cold)
1879 spin_lock(&zone->lock);
1880 for (i = 0; i < count; ++i) {
1881 struct page *page = __rmqueue(zone, order, migratetype, 0);
1882 if (unlikely(page == NULL))
1886 * Split buddy pages returned by expand() are received here
1887 * in physical page order. The page is added to the callers and
1888 * list and the list head then moves forward. From the callers
1889 * perspective, the linked list is ordered by page number in
1890 * some conditions. This is useful for IO devices that can
1891 * merge IO requests if the physical pages are ordered
1895 list_add(&page->lru, list);
1897 list_add_tail(&page->lru, list);
1899 if (is_migrate_cma(get_pcppage_migratetype(page)))
1900 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1903 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1904 spin_unlock(&zone->lock);
1910 * Called from the vmstat counter updater to drain pagesets of this
1911 * currently executing processor on remote nodes after they have
1914 * Note that this function must be called with the thread pinned to
1915 * a single processor.
1917 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1919 unsigned long flags;
1921 int to_drain, batch;
1923 local_lock_irqsave(pa_lock, flags);
1924 batch = READ_ONCE(pcp->batch);
1925 to_drain = min(pcp->count, batch);
1927 isolate_pcp_pages(to_drain, pcp, &dst);
1928 pcp->count -= to_drain;
1930 local_unlock_irqrestore(pa_lock, flags);
1931 free_pcppages_bulk(zone, to_drain, &dst);
1936 * Drain pcplists of the indicated processor and zone.
1938 * The processor must either be the current processor and the
1939 * thread pinned to the current processor or a processor that
1942 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1944 unsigned long flags;
1945 struct per_cpu_pageset *pset;
1946 struct per_cpu_pages *pcp;
1950 cpu_lock_irqsave(cpu, flags);
1951 pset = per_cpu_ptr(zone->pageset, cpu);
1956 isolate_pcp_pages(count, pcp, &dst);
1959 cpu_unlock_irqrestore(cpu, flags);
1961 free_pcppages_bulk(zone, count, &dst);
1965 * Drain pcplists of all zones on the indicated processor.
1967 * The processor must either be the current processor and the
1968 * thread pinned to the current processor or a processor that
1971 static void drain_pages(unsigned int cpu)
1975 for_each_populated_zone(zone) {
1976 drain_pages_zone(cpu, zone);
1981 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1983 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1984 * the single zone's pages.
1986 void drain_local_pages(struct zone *zone)
1988 int cpu = smp_processor_id();
1991 drain_pages_zone(cpu, zone);
1997 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1999 * When zone parameter is non-NULL, spill just the single zone's pages.
2001 * Note that this code is protected against sending an IPI to an offline
2002 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2003 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2004 * nothing keeps CPUs from showing up after we populated the cpumask and
2005 * before the call to on_each_cpu_mask().
2007 void drain_all_pages(struct zone *zone)
2012 * Allocate in the BSS so we wont require allocation in
2013 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2015 static cpumask_t cpus_with_pcps;
2018 * We don't care about racing with CPU hotplug event
2019 * as offline notification will cause the notified
2020 * cpu to drain that CPU pcps and on_each_cpu_mask
2021 * disables preemption as part of its processing
2023 for_each_online_cpu(cpu) {
2024 struct per_cpu_pageset *pcp;
2026 bool has_pcps = false;
2029 pcp = per_cpu_ptr(zone->pageset, cpu);
2033 for_each_populated_zone(z) {
2034 pcp = per_cpu_ptr(z->pageset, cpu);
2035 if (pcp->pcp.count) {
2043 cpumask_set_cpu(cpu, &cpus_with_pcps);
2045 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2047 #ifndef CONFIG_PREEMPT_RT_BASE
2048 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2051 for_each_cpu(cpu, &cpus_with_pcps) {
2053 drain_pages_zone(cpu, zone);
2060 #ifdef CONFIG_HIBERNATION
2062 void mark_free_pages(struct zone *zone)
2064 unsigned long pfn, max_zone_pfn;
2065 unsigned long flags;
2066 unsigned int order, t;
2067 struct list_head *curr;
2069 if (zone_is_empty(zone))
2072 spin_lock_irqsave(&zone->lock, flags);
2074 max_zone_pfn = zone_end_pfn(zone);
2075 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2076 if (pfn_valid(pfn)) {
2077 struct page *page = pfn_to_page(pfn);
2079 if (!swsusp_page_is_forbidden(page))
2080 swsusp_unset_page_free(page);
2083 for_each_migratetype_order(order, t) {
2084 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2087 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2088 for (i = 0; i < (1UL << order); i++)
2089 swsusp_set_page_free(pfn_to_page(pfn + i));
2092 spin_unlock_irqrestore(&zone->lock, flags);
2094 #endif /* CONFIG_PM */
2097 * Free a 0-order page
2098 * cold == true ? free a cold page : free a hot page
2100 void free_hot_cold_page(struct page *page, bool cold)
2102 struct zone *zone = page_zone(page);
2103 struct per_cpu_pages *pcp;
2104 unsigned long flags;
2105 unsigned long pfn = page_to_pfn(page);
2108 if (!free_pages_prepare(page, 0))
2111 migratetype = get_pfnblock_migratetype(page, pfn);
2112 set_pcppage_migratetype(page, migratetype);
2113 local_lock_irqsave(pa_lock, flags);
2114 __count_vm_event(PGFREE);
2117 * We only track unmovable, reclaimable and movable on pcp lists.
2118 * Free ISOLATE pages back to the allocator because they are being
2119 * offlined but treat RESERVE as movable pages so we can get those
2120 * areas back if necessary. Otherwise, we may have to free
2121 * excessively into the page allocator
2123 if (migratetype >= MIGRATE_PCPTYPES) {
2124 if (unlikely(is_migrate_isolate(migratetype))) {
2125 free_one_page(zone, page, pfn, 0, migratetype);
2128 migratetype = MIGRATE_MOVABLE;
2131 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2133 list_add(&page->lru, &pcp->lists[migratetype]);
2135 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2137 if (pcp->count >= pcp->high) {
2138 unsigned long batch = READ_ONCE(pcp->batch);
2141 isolate_pcp_pages(batch, pcp, &dst);
2142 pcp->count -= batch;
2143 local_unlock_irqrestore(pa_lock, flags);
2144 free_pcppages_bulk(zone, batch, &dst);
2149 local_unlock_irqrestore(pa_lock, flags);
2153 * Free a list of 0-order pages
2155 void free_hot_cold_page_list(struct list_head *list, bool cold)
2157 struct page *page, *next;
2159 list_for_each_entry_safe(page, next, list, lru) {
2160 trace_mm_page_free_batched(page, cold);
2161 free_hot_cold_page(page, cold);
2166 * split_page takes a non-compound higher-order page, and splits it into
2167 * n (1<<order) sub-pages: page[0..n]
2168 * Each sub-page must be freed individually.
2170 * Note: this is probably too low level an operation for use in drivers.
2171 * Please consult with lkml before using this in your driver.
2173 void split_page(struct page *page, unsigned int order)
2178 VM_BUG_ON_PAGE(PageCompound(page), page);
2179 VM_BUG_ON_PAGE(!page_count(page), page);
2181 #ifdef CONFIG_KMEMCHECK
2183 * Split shadow pages too, because free(page[0]) would
2184 * otherwise free the whole shadow.
2186 if (kmemcheck_page_is_tracked(page))
2187 split_page(virt_to_page(page[0].shadow), order);
2190 gfp_mask = get_page_owner_gfp(page);
2191 set_page_owner(page, 0, gfp_mask);
2192 for (i = 1; i < (1 << order); i++) {
2193 set_page_refcounted(page + i);
2194 set_page_owner(page + i, 0, gfp_mask);
2197 EXPORT_SYMBOL_GPL(split_page);
2199 int __isolate_free_page(struct page *page, unsigned int order)
2201 unsigned long watermark;
2205 BUG_ON(!PageBuddy(page));
2207 zone = page_zone(page);
2208 mt = get_pageblock_migratetype(page);
2210 if (!is_migrate_isolate(mt)) {
2211 /* Obey watermarks as if the page was being allocated */
2212 watermark = low_wmark_pages(zone) + (1 << order);
2213 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2216 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2219 /* Remove page from free list */
2220 list_del(&page->lru);
2221 zone->free_area[order].nr_free--;
2222 rmv_page_order(page);
2224 set_page_owner(page, order, __GFP_MOVABLE);
2226 /* Set the pageblock if the isolated page is at least a pageblock */
2227 if (order >= pageblock_order - 1) {
2228 struct page *endpage = page + (1 << order) - 1;
2229 for (; page < endpage; page += pageblock_nr_pages) {
2230 int mt = get_pageblock_migratetype(page);
2231 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2232 set_pageblock_migratetype(page,
2238 return 1UL << order;
2242 * Similar to split_page except the page is already free. As this is only
2243 * being used for migration, the migratetype of the block also changes.
2244 * As this is called with interrupts disabled, the caller is responsible
2245 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2248 * Note: this is probably too low level an operation for use in drivers.
2249 * Please consult with lkml before using this in your driver.
2251 int split_free_page(struct page *page)
2256 order = page_order(page);
2258 nr_pages = __isolate_free_page(page, order);
2262 /* Split into individual pages */
2263 set_page_refcounted(page);
2264 split_page(page, order);
2269 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2272 struct page *buffered_rmqueue(struct zone *preferred_zone,
2273 struct zone *zone, unsigned int order,
2274 gfp_t gfp_flags, int alloc_flags, int migratetype)
2276 unsigned long flags;
2278 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2280 if (likely(order == 0)) {
2281 struct per_cpu_pages *pcp;
2282 struct list_head *list;
2284 local_lock_irqsave(pa_lock, flags);
2285 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2286 list = &pcp->lists[migratetype];
2287 if (list_empty(list)) {
2288 pcp->count += rmqueue_bulk(zone, 0,
2291 if (unlikely(list_empty(list)))
2296 page = list_entry(list->prev, struct page, lru);
2298 page = list_entry(list->next, struct page, lru);
2300 list_del(&page->lru);
2303 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2305 * __GFP_NOFAIL is not to be used in new code.
2307 * All __GFP_NOFAIL callers should be fixed so that they
2308 * properly detect and handle allocation failures.
2310 * We most definitely don't want callers attempting to
2311 * allocate greater than order-1 page units with
2314 WARN_ON_ONCE(order > 1);
2316 local_spin_lock_irqsave(pa_lock, &zone->lock, flags);
2319 if (alloc_flags & ALLOC_HARDER) {
2320 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2322 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2325 page = __rmqueue(zone, order, migratetype, gfp_flags);
2327 spin_unlock(&zone->lock);
2330 __mod_zone_freepage_state(zone, -(1 << order),
2331 get_pcppage_migratetype(page));
2332 spin_unlock(&zone->lock);
2335 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2336 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2337 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2338 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2341 zone_statistics(preferred_zone, zone, gfp_flags);
2342 local_unlock_irqrestore(pa_lock, flags);
2344 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2348 local_unlock_irqrestore(pa_lock, flags);
2352 #ifdef CONFIG_FAIL_PAGE_ALLOC
2355 struct fault_attr attr;
2357 bool ignore_gfp_highmem;
2358 bool ignore_gfp_reclaim;
2360 } fail_page_alloc = {
2361 .attr = FAULT_ATTR_INITIALIZER,
2362 .ignore_gfp_reclaim = true,
2363 .ignore_gfp_highmem = true,
2367 static int __init setup_fail_page_alloc(char *str)
2369 return setup_fault_attr(&fail_page_alloc.attr, str);
2371 __setup("fail_page_alloc=", setup_fail_page_alloc);
2373 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2375 if (order < fail_page_alloc.min_order)
2377 if (gfp_mask & __GFP_NOFAIL)
2379 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2381 if (fail_page_alloc.ignore_gfp_reclaim &&
2382 (gfp_mask & __GFP_DIRECT_RECLAIM))
2385 return should_fail(&fail_page_alloc.attr, 1 << order);
2388 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2390 static int __init fail_page_alloc_debugfs(void)
2392 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2395 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2396 &fail_page_alloc.attr);
2398 return PTR_ERR(dir);
2400 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2401 &fail_page_alloc.ignore_gfp_reclaim))
2403 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2404 &fail_page_alloc.ignore_gfp_highmem))
2406 if (!debugfs_create_u32("min-order", mode, dir,
2407 &fail_page_alloc.min_order))
2412 debugfs_remove_recursive(dir);
2417 late_initcall(fail_page_alloc_debugfs);
2419 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2421 #else /* CONFIG_FAIL_PAGE_ALLOC */
2423 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2428 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2431 * Return true if free base pages are above 'mark'. For high-order checks it
2432 * will return true of the order-0 watermark is reached and there is at least
2433 * one free page of a suitable size. Checking now avoids taking the zone lock
2434 * to check in the allocation paths if no pages are free.
2436 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2437 unsigned long mark, int classzone_idx, int alloc_flags,
2442 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2444 /* free_pages may go negative - that's OK */
2445 free_pages -= (1 << order) - 1;
2447 if (alloc_flags & ALLOC_HIGH)
2451 * If the caller does not have rights to ALLOC_HARDER then subtract
2452 * the high-atomic reserves. This will over-estimate the size of the
2453 * atomic reserve but it avoids a search.
2455 if (likely(!alloc_harder))
2456 free_pages -= z->nr_reserved_highatomic;
2461 /* If allocation can't use CMA areas don't use free CMA pages */
2462 if (!(alloc_flags & ALLOC_CMA))
2463 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2467 * Check watermarks for an order-0 allocation request. If these
2468 * are not met, then a high-order request also cannot go ahead
2469 * even if a suitable page happened to be free.
2471 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2474 /* If this is an order-0 request then the watermark is fine */
2478 /* For a high-order request, check at least one suitable page is free */
2479 for (o = order; o < MAX_ORDER; o++) {
2480 struct free_area *area = &z->free_area[o];
2489 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2490 if (!list_empty(&area->free_list[mt]))
2495 if ((alloc_flags & ALLOC_CMA) &&
2496 !list_empty(&area->free_list[MIGRATE_CMA])) {
2504 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2505 int classzone_idx, int alloc_flags)
2507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2508 zone_page_state(z, NR_FREE_PAGES));
2511 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2512 unsigned long mark, int classzone_idx)
2514 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2516 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2517 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2519 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2524 static bool zone_local(struct zone *local_zone, struct zone *zone)
2526 return local_zone->node == zone->node;
2529 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2531 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2534 #else /* CONFIG_NUMA */
2535 static bool zone_local(struct zone *local_zone, struct zone *zone)
2540 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2544 #endif /* CONFIG_NUMA */
2546 static void reset_alloc_batches(struct zone *preferred_zone)
2548 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2551 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2552 high_wmark_pages(zone) - low_wmark_pages(zone) -
2553 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2554 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2555 } while (zone++ != preferred_zone);
2559 * get_page_from_freelist goes through the zonelist trying to allocate
2562 static struct page *
2563 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2564 const struct alloc_context *ac)
2566 struct zonelist *zonelist = ac->zonelist;
2568 struct page *page = NULL;
2570 int nr_fair_skipped = 0;
2571 bool zonelist_rescan;
2574 zonelist_rescan = false;
2577 * Scan zonelist, looking for a zone with enough free.
2578 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2580 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2584 if (cpusets_enabled() &&
2585 (alloc_flags & ALLOC_CPUSET) &&
2586 !cpuset_zone_allowed(zone, gfp_mask))
2589 * Distribute pages in proportion to the individual
2590 * zone size to ensure fair page aging. The zone a
2591 * page was allocated in should have no effect on the
2592 * time the page has in memory before being reclaimed.
2594 if (alloc_flags & ALLOC_FAIR) {
2595 if (!zone_local(ac->preferred_zone, zone))
2597 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2603 * When allocating a page cache page for writing, we
2604 * want to get it from a zone that is within its dirty
2605 * limit, such that no single zone holds more than its
2606 * proportional share of globally allowed dirty pages.
2607 * The dirty limits take into account the zone's
2608 * lowmem reserves and high watermark so that kswapd
2609 * should be able to balance it without having to
2610 * write pages from its LRU list.
2612 * This may look like it could increase pressure on
2613 * lower zones by failing allocations in higher zones
2614 * before they are full. But the pages that do spill
2615 * over are limited as the lower zones are protected
2616 * by this very same mechanism. It should not become
2617 * a practical burden to them.
2619 * XXX: For now, allow allocations to potentially
2620 * exceed the per-zone dirty limit in the slowpath
2621 * (spread_dirty_pages unset) before going into reclaim,
2622 * which is important when on a NUMA setup the allowed
2623 * zones are together not big enough to reach the
2624 * global limit. The proper fix for these situations
2625 * will require awareness of zones in the
2626 * dirty-throttling and the flusher threads.
2628 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2631 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2632 if (!zone_watermark_ok(zone, order, mark,
2633 ac->classzone_idx, alloc_flags)) {
2636 /* Checked here to keep the fast path fast */
2637 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2638 if (alloc_flags & ALLOC_NO_WATERMARKS)
2641 if (zone_reclaim_mode == 0 ||
2642 !zone_allows_reclaim(ac->preferred_zone, zone))
2645 ret = zone_reclaim(zone, gfp_mask, order);
2647 case ZONE_RECLAIM_NOSCAN:
2650 case ZONE_RECLAIM_FULL:
2651 /* scanned but unreclaimable */
2654 /* did we reclaim enough */
2655 if (zone_watermark_ok(zone, order, mark,
2656 ac->classzone_idx, alloc_flags))
2664 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2665 gfp_mask, alloc_flags, ac->migratetype);
2667 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2671 * If this is a high-order atomic allocation then check
2672 * if the pageblock should be reserved for the future
2674 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2675 reserve_highatomic_pageblock(page, zone, order);
2682 * The first pass makes sure allocations are spread fairly within the
2683 * local node. However, the local node might have free pages left
2684 * after the fairness batches are exhausted, and remote zones haven't
2685 * even been considered yet. Try once more without fairness, and
2686 * include remote zones now, before entering the slowpath and waking
2687 * kswapd: prefer spilling to a remote zone over swapping locally.
2689 if (alloc_flags & ALLOC_FAIR) {
2690 alloc_flags &= ~ALLOC_FAIR;
2691 if (nr_fair_skipped) {
2692 zonelist_rescan = true;
2693 reset_alloc_batches(ac->preferred_zone);
2695 if (nr_online_nodes > 1)
2696 zonelist_rescan = true;
2699 if (zonelist_rescan)
2706 * Large machines with many possible nodes should not always dump per-node
2707 * meminfo in irq context.
2709 static inline bool should_suppress_show_mem(void)
2714 ret = in_interrupt();
2719 static DEFINE_RATELIMIT_STATE(nopage_rs,
2720 DEFAULT_RATELIMIT_INTERVAL,
2721 DEFAULT_RATELIMIT_BURST);
2723 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2725 unsigned int filter = SHOW_MEM_FILTER_NODES;
2727 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2728 debug_guardpage_minorder() > 0)
2732 * This documents exceptions given to allocations in certain
2733 * contexts that are allowed to allocate outside current's set
2736 if (!(gfp_mask & __GFP_NOMEMALLOC))
2737 if (test_thread_flag(TIF_MEMDIE) ||
2738 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2739 filter &= ~SHOW_MEM_FILTER_NODES;
2740 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2741 filter &= ~SHOW_MEM_FILTER_NODES;
2744 struct va_format vaf;
2747 va_start(args, fmt);
2752 pr_warn("%pV", &vaf);
2757 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2758 current->comm, order, gfp_mask);
2761 if (!should_suppress_show_mem())
2765 static inline struct page *
2766 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2767 const struct alloc_context *ac, unsigned long *did_some_progress)
2769 struct oom_control oc = {
2770 .zonelist = ac->zonelist,
2771 .nodemask = ac->nodemask,
2772 .gfp_mask = gfp_mask,
2777 *did_some_progress = 0;
2780 * Acquire the oom lock. If that fails, somebody else is
2781 * making progress for us.
2783 if (!mutex_trylock(&oom_lock)) {
2784 *did_some_progress = 1;
2785 schedule_timeout_uninterruptible(1);
2790 * Go through the zonelist yet one more time, keep very high watermark
2791 * here, this is only to catch a parallel oom killing, we must fail if
2792 * we're still under heavy pressure.
2794 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2795 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2799 if (!(gfp_mask & __GFP_NOFAIL)) {
2800 /* Coredumps can quickly deplete all memory reserves */
2801 if (current->flags & PF_DUMPCORE)
2803 /* The OOM killer will not help higher order allocs */
2804 if (order > PAGE_ALLOC_COSTLY_ORDER)
2806 /* The OOM killer does not needlessly kill tasks for lowmem */
2807 if (ac->high_zoneidx < ZONE_NORMAL)
2809 /* The OOM killer does not compensate for IO-less reclaim */
2810 if (!(gfp_mask & __GFP_FS)) {
2812 * XXX: Page reclaim didn't yield anything,
2813 * and the OOM killer can't be invoked, but
2814 * keep looping as per tradition.
2816 *did_some_progress = 1;
2819 if (pm_suspended_storage())
2821 /* The OOM killer may not free memory on a specific node */
2822 if (gfp_mask & __GFP_THISNODE)
2825 /* Exhausted what can be done so it's blamo time */
2826 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2827 *did_some_progress = 1;
2829 mutex_unlock(&oom_lock);
2833 #ifdef CONFIG_COMPACTION
2834 /* Try memory compaction for high-order allocations before reclaim */
2835 static struct page *
2836 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2837 int alloc_flags, const struct alloc_context *ac,
2838 enum migrate_mode mode, int *contended_compaction,
2839 bool *deferred_compaction)
2841 unsigned long compact_result;
2847 current->flags |= PF_MEMALLOC;
2848 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2849 mode, contended_compaction);
2850 current->flags &= ~PF_MEMALLOC;
2852 switch (compact_result) {
2853 case COMPACT_DEFERRED:
2854 *deferred_compaction = true;
2856 case COMPACT_SKIPPED:
2863 * At least in one zone compaction wasn't deferred or skipped, so let's
2864 * count a compaction stall
2866 count_vm_event(COMPACTSTALL);
2868 page = get_page_from_freelist(gfp_mask, order,
2869 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2872 struct zone *zone = page_zone(page);
2874 zone->compact_blockskip_flush = false;
2875 compaction_defer_reset(zone, order, true);
2876 count_vm_event(COMPACTSUCCESS);
2881 * It's bad if compaction run occurs and fails. The most likely reason
2882 * is that pages exist, but not enough to satisfy watermarks.
2884 count_vm_event(COMPACTFAIL);
2891 static inline struct page *
2892 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2893 int alloc_flags, const struct alloc_context *ac,
2894 enum migrate_mode mode, int *contended_compaction,
2895 bool *deferred_compaction)
2899 #endif /* CONFIG_COMPACTION */
2901 /* Perform direct synchronous page reclaim */
2903 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2904 const struct alloc_context *ac)
2906 struct reclaim_state reclaim_state;
2911 /* We now go into synchronous reclaim */
2912 cpuset_memory_pressure_bump();
2913 current->flags |= PF_MEMALLOC;
2914 lockdep_set_current_reclaim_state(gfp_mask);
2915 reclaim_state.reclaimed_slab = 0;
2916 current->reclaim_state = &reclaim_state;
2918 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2921 current->reclaim_state = NULL;
2922 lockdep_clear_current_reclaim_state();
2923 current->flags &= ~PF_MEMALLOC;
2930 /* The really slow allocator path where we enter direct reclaim */
2931 static inline struct page *
2932 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2933 int alloc_flags, const struct alloc_context *ac,
2934 unsigned long *did_some_progress)
2936 struct page *page = NULL;
2937 bool drained = false;
2939 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2940 if (unlikely(!(*did_some_progress)))
2944 page = get_page_from_freelist(gfp_mask, order,
2945 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2948 * If an allocation failed after direct reclaim, it could be because
2949 * pages are pinned on the per-cpu lists or in high alloc reserves.
2950 * Shrink them them and try again
2952 if (!page && !drained) {
2953 unreserve_highatomic_pageblock(ac);
2954 drain_all_pages(NULL);
2963 * This is called in the allocator slow-path if the allocation request is of
2964 * sufficient urgency to ignore watermarks and take other desperate measures
2966 static inline struct page *
2967 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2968 const struct alloc_context *ac)
2973 page = get_page_from_freelist(gfp_mask, order,
2974 ALLOC_NO_WATERMARKS, ac);
2976 if (!page && gfp_mask & __GFP_NOFAIL)
2977 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2979 } while (!page && (gfp_mask & __GFP_NOFAIL));
2984 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2989 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2990 ac->high_zoneidx, ac->nodemask)
2991 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2995 gfp_to_alloc_flags(gfp_t gfp_mask)
2997 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2999 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3000 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3003 * The caller may dip into page reserves a bit more if the caller
3004 * cannot run direct reclaim, or if the caller has realtime scheduling
3005 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3006 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3008 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3010 if (gfp_mask & __GFP_ATOMIC) {
3012 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3013 * if it can't schedule.
3015 if (!(gfp_mask & __GFP_NOMEMALLOC))
3016 alloc_flags |= ALLOC_HARDER;
3018 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3019 * comment for __cpuset_node_allowed().
3021 alloc_flags &= ~ALLOC_CPUSET;
3022 } else if (unlikely(rt_task(current)) && !in_interrupt())
3023 alloc_flags |= ALLOC_HARDER;
3025 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3026 if (gfp_mask & __GFP_MEMALLOC)
3027 alloc_flags |= ALLOC_NO_WATERMARKS;
3028 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3029 alloc_flags |= ALLOC_NO_WATERMARKS;
3030 else if (!in_interrupt() &&
3031 ((current->flags & PF_MEMALLOC) ||
3032 unlikely(test_thread_flag(TIF_MEMDIE))))
3033 alloc_flags |= ALLOC_NO_WATERMARKS;
3036 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3037 alloc_flags |= ALLOC_CMA;
3042 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3044 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3047 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3049 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3052 static inline struct page *
3053 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3054 struct alloc_context *ac)
3056 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3057 struct page *page = NULL;
3059 unsigned long pages_reclaimed = 0;
3060 unsigned long did_some_progress;
3061 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3062 bool deferred_compaction = false;
3063 int contended_compaction = COMPACT_CONTENDED_NONE;
3066 * In the slowpath, we sanity check order to avoid ever trying to
3067 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3068 * be using allocators in order of preference for an area that is
3071 if (order >= MAX_ORDER) {
3072 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3077 * We also sanity check to catch abuse of atomic reserves being used by
3078 * callers that are not in atomic context.
3080 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3081 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3082 gfp_mask &= ~__GFP_ATOMIC;
3085 * If this allocation cannot block and it is for a specific node, then
3086 * fail early. There's no need to wakeup kswapd or retry for a
3087 * speculative node-specific allocation.
3089 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3093 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3094 wake_all_kswapds(order, ac);
3097 * OK, we're below the kswapd watermark and have kicked background
3098 * reclaim. Now things get more complex, so set up alloc_flags according
3099 * to how we want to proceed.
3101 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3104 * Find the true preferred zone if the allocation is unconstrained by
3107 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3108 struct zoneref *preferred_zoneref;
3109 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3110 ac->high_zoneidx, NULL, &ac->preferred_zone);
3111 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3114 /* This is the last chance, in general, before the goto nopage. */
3115 page = get_page_from_freelist(gfp_mask, order,
3116 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3120 /* Allocate without watermarks if the context allows */
3121 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3123 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3124 * the allocation is high priority and these type of
3125 * allocations are system rather than user orientated
3127 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3129 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3136 /* Caller is not willing to reclaim, we can't balance anything */
3137 if (!can_direct_reclaim) {
3139 * All existing users of the deprecated __GFP_NOFAIL are
3140 * blockable, so warn of any new users that actually allow this
3141 * type of allocation to fail.
3143 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3147 /* Avoid recursion of direct reclaim */
3148 if (current->flags & PF_MEMALLOC)
3151 /* Avoid allocations with no watermarks from looping endlessly */
3152 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3156 * Try direct compaction. The first pass is asynchronous. Subsequent
3157 * attempts after direct reclaim are synchronous
3159 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3161 &contended_compaction,
3162 &deferred_compaction);
3166 /* Checks for THP-specific high-order allocations */
3167 if (is_thp_gfp_mask(gfp_mask)) {
3169 * If compaction is deferred for high-order allocations, it is
3170 * because sync compaction recently failed. If this is the case
3171 * and the caller requested a THP allocation, we do not want
3172 * to heavily disrupt the system, so we fail the allocation
3173 * instead of entering direct reclaim.
3175 if (deferred_compaction)
3179 * In all zones where compaction was attempted (and not
3180 * deferred or skipped), lock contention has been detected.
3181 * For THP allocation we do not want to disrupt the others
3182 * so we fallback to base pages instead.
3184 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3188 * If compaction was aborted due to need_resched(), we do not
3189 * want to further increase allocation latency, unless it is
3190 * khugepaged trying to collapse.
3192 if (contended_compaction == COMPACT_CONTENDED_SCHED
3193 && !(current->flags & PF_KTHREAD))
3198 * It can become very expensive to allocate transparent hugepages at
3199 * fault, so use asynchronous memory compaction for THP unless it is
3200 * khugepaged trying to collapse.
3202 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3203 migration_mode = MIGRATE_SYNC_LIGHT;
3205 /* Try direct reclaim and then allocating */
3206 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3207 &did_some_progress);
3211 /* Do not loop if specifically requested */
3212 if (gfp_mask & __GFP_NORETRY)
3215 /* Keep reclaiming pages as long as there is reasonable progress */
3216 pages_reclaimed += did_some_progress;
3217 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3218 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3219 /* Wait for some write requests to complete then retry */
3220 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3224 /* Reclaim has failed us, start killing things */
3225 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3229 /* Retry as long as the OOM killer is making progress */
3230 if (did_some_progress)
3235 * High-order allocations do not necessarily loop after
3236 * direct reclaim and reclaim/compaction depends on compaction
3237 * being called after reclaim so call directly if necessary
3239 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3241 &contended_compaction,
3242 &deferred_compaction);
3246 warn_alloc_failed(gfp_mask, order, NULL);
3252 * This is the 'heart' of the zoned buddy allocator.
3255 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3256 struct zonelist *zonelist, nodemask_t *nodemask)
3258 struct zoneref *preferred_zoneref;
3259 struct page *page = NULL;
3260 unsigned int cpuset_mems_cookie;
3261 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3262 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3263 struct alloc_context ac = {
3264 .high_zoneidx = gfp_zone(gfp_mask),
3265 .nodemask = nodemask,
3266 .migratetype = gfpflags_to_migratetype(gfp_mask),
3269 gfp_mask &= gfp_allowed_mask;
3271 lockdep_trace_alloc(gfp_mask);
3273 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3275 if (should_fail_alloc_page(gfp_mask, order))
3279 * Check the zones suitable for the gfp_mask contain at least one
3280 * valid zone. It's possible to have an empty zonelist as a result
3281 * of __GFP_THISNODE and a memoryless node
3283 if (unlikely(!zonelist->_zonerefs->zone))
3286 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3287 alloc_flags |= ALLOC_CMA;
3290 cpuset_mems_cookie = read_mems_allowed_begin();
3292 /* We set it here, as __alloc_pages_slowpath might have changed it */
3293 ac.zonelist = zonelist;
3295 /* Dirty zone balancing only done in the fast path */
3296 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3298 /* The preferred zone is used for statistics later */
3299 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3300 ac.nodemask ? : &cpuset_current_mems_allowed,
3301 &ac.preferred_zone);
3302 if (!ac.preferred_zone)
3304 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3306 /* First allocation attempt */
3307 alloc_mask = gfp_mask|__GFP_HARDWALL;
3308 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3309 if (unlikely(!page)) {
3311 * Runtime PM, block IO and its error handling path
3312 * can deadlock because I/O on the device might not
3315 alloc_mask = memalloc_noio_flags(gfp_mask);
3316 ac.spread_dirty_pages = false;
3318 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3321 if (kmemcheck_enabled && page)
3322 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3324 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3328 * When updating a task's mems_allowed, it is possible to race with
3329 * parallel threads in such a way that an allocation can fail while
3330 * the mask is being updated. If a page allocation is about to fail,
3331 * check if the cpuset changed during allocation and if so, retry.
3333 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3338 EXPORT_SYMBOL(__alloc_pages_nodemask);
3341 * Common helper functions.
3343 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3348 * __get_free_pages() returns a 32-bit address, which cannot represent
3351 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3353 page = alloc_pages(gfp_mask, order);
3356 return (unsigned long) page_address(page);
3358 EXPORT_SYMBOL(__get_free_pages);
3360 unsigned long get_zeroed_page(gfp_t gfp_mask)
3362 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3364 EXPORT_SYMBOL(get_zeroed_page);
3366 void __free_pages(struct page *page, unsigned int order)
3368 if (put_page_testzero(page)) {
3370 free_hot_cold_page(page, false);
3372 __free_pages_ok(page, order);
3376 EXPORT_SYMBOL(__free_pages);
3378 void free_pages(unsigned long addr, unsigned int order)
3381 VM_BUG_ON(!virt_addr_valid((void *)addr));
3382 __free_pages(virt_to_page((void *)addr), order);
3386 EXPORT_SYMBOL(free_pages);
3390 * An arbitrary-length arbitrary-offset area of memory which resides
3391 * within a 0 or higher order page. Multiple fragments within that page
3392 * are individually refcounted, in the page's reference counter.
3394 * The page_frag functions below provide a simple allocation framework for
3395 * page fragments. This is used by the network stack and network device
3396 * drivers to provide a backing region of memory for use as either an
3397 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3399 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3402 struct page *page = NULL;
3403 gfp_t gfp = gfp_mask;
3405 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3406 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3408 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3409 PAGE_FRAG_CACHE_MAX_ORDER);
3410 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3412 if (unlikely(!page))
3413 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3415 nc->va = page ? page_address(page) : NULL;
3420 void *__alloc_page_frag(struct page_frag_cache *nc,
3421 unsigned int fragsz, gfp_t gfp_mask)
3423 unsigned int size = PAGE_SIZE;
3427 if (unlikely(!nc->va)) {
3429 page = __page_frag_refill(nc, gfp_mask);
3433 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3434 /* if size can vary use size else just use PAGE_SIZE */
3437 /* Even if we own the page, we do not use atomic_set().
3438 * This would break get_page_unless_zero() users.
3440 atomic_add(size - 1, &page->_count);
3442 /* reset page count bias and offset to start of new frag */
3443 nc->pfmemalloc = page_is_pfmemalloc(page);
3444 nc->pagecnt_bias = size;
3448 offset = nc->offset - fragsz;
3449 if (unlikely(offset < 0)) {
3450 page = virt_to_page(nc->va);
3452 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3455 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3456 /* if size can vary use size else just use PAGE_SIZE */
3459 /* OK, page count is 0, we can safely set it */
3460 atomic_set(&page->_count, size);
3462 /* reset page count bias and offset to start of new frag */
3463 nc->pagecnt_bias = size;
3464 offset = size - fragsz;
3468 nc->offset = offset;
3470 return nc->va + offset;
3472 EXPORT_SYMBOL(__alloc_page_frag);
3475 * Frees a page fragment allocated out of either a compound or order 0 page.
3477 void __free_page_frag(void *addr)
3479 struct page *page = virt_to_head_page(addr);
3481 if (unlikely(put_page_testzero(page)))
3482 __free_pages_ok(page, compound_order(page));
3484 EXPORT_SYMBOL(__free_page_frag);
3487 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3488 * of the current memory cgroup.
3490 * It should be used when the caller would like to use kmalloc, but since the
3491 * allocation is large, it has to fall back to the page allocator.
3493 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3497 page = alloc_pages(gfp_mask, order);
3498 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3499 __free_pages(page, order);
3505 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3509 page = alloc_pages_node(nid, gfp_mask, order);
3510 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3511 __free_pages(page, order);
3518 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3521 void __free_kmem_pages(struct page *page, unsigned int order)
3523 memcg_kmem_uncharge(page, order);
3524 __free_pages(page, order);
3527 void free_kmem_pages(unsigned long addr, unsigned int order)
3530 VM_BUG_ON(!virt_addr_valid((void *)addr));
3531 __free_kmem_pages(virt_to_page((void *)addr), order);
3535 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3539 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3540 unsigned long used = addr + PAGE_ALIGN(size);
3542 split_page(virt_to_page((void *)addr), order);
3543 while (used < alloc_end) {
3548 return (void *)addr;
3552 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3553 * @size: the number of bytes to allocate
3554 * @gfp_mask: GFP flags for the allocation
3556 * This function is similar to alloc_pages(), except that it allocates the
3557 * minimum number of pages to satisfy the request. alloc_pages() can only
3558 * allocate memory in power-of-two pages.
3560 * This function is also limited by MAX_ORDER.
3562 * Memory allocated by this function must be released by free_pages_exact().
3564 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3566 unsigned int order = get_order(size);
3569 addr = __get_free_pages(gfp_mask, order);
3570 return make_alloc_exact(addr, order, size);
3572 EXPORT_SYMBOL(alloc_pages_exact);
3575 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3577 * @nid: the preferred node ID where memory should be allocated
3578 * @size: the number of bytes to allocate
3579 * @gfp_mask: GFP flags for the allocation
3581 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3584 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3586 unsigned int order = get_order(size);
3587 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3590 return make_alloc_exact((unsigned long)page_address(p), order, size);
3594 * free_pages_exact - release memory allocated via alloc_pages_exact()
3595 * @virt: the value returned by alloc_pages_exact.
3596 * @size: size of allocation, same value as passed to alloc_pages_exact().
3598 * Release the memory allocated by a previous call to alloc_pages_exact.
3600 void free_pages_exact(void *virt, size_t size)
3602 unsigned long addr = (unsigned long)virt;
3603 unsigned long end = addr + PAGE_ALIGN(size);
3605 while (addr < end) {
3610 EXPORT_SYMBOL(free_pages_exact);
3613 * nr_free_zone_pages - count number of pages beyond high watermark
3614 * @offset: The zone index of the highest zone
3616 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3617 * high watermark within all zones at or below a given zone index. For each
3618 * zone, the number of pages is calculated as:
3619 * managed_pages - high_pages
3621 static unsigned long nr_free_zone_pages(int offset)
3626 /* Just pick one node, since fallback list is circular */
3627 unsigned long sum = 0;
3629 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3631 for_each_zone_zonelist(zone, z, zonelist, offset) {
3632 unsigned long size = zone->managed_pages;
3633 unsigned long high = high_wmark_pages(zone);
3642 * nr_free_buffer_pages - count number of pages beyond high watermark
3644 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3645 * watermark within ZONE_DMA and ZONE_NORMAL.
3647 unsigned long nr_free_buffer_pages(void)
3649 return nr_free_zone_pages(gfp_zone(GFP_USER));
3651 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3654 * nr_free_pagecache_pages - count number of pages beyond high watermark
3656 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3657 * high watermark within all zones.
3659 unsigned long nr_free_pagecache_pages(void)
3661 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3664 static inline void show_node(struct zone *zone)
3666 if (IS_ENABLED(CONFIG_NUMA))
3667 printk("Node %d ", zone_to_nid(zone));
3670 void si_meminfo(struct sysinfo *val)
3672 val->totalram = totalram_pages;
3673 val->sharedram = global_page_state(NR_SHMEM);
3674 val->freeram = global_page_state(NR_FREE_PAGES);
3675 val->bufferram = nr_blockdev_pages();
3676 val->totalhigh = totalhigh_pages;
3677 val->freehigh = nr_free_highpages();
3678 val->mem_unit = PAGE_SIZE;
3681 EXPORT_SYMBOL(si_meminfo);
3684 void si_meminfo_node(struct sysinfo *val, int nid)
3686 int zone_type; /* needs to be signed */
3687 unsigned long managed_pages = 0;
3688 pg_data_t *pgdat = NODE_DATA(nid);
3690 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3691 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3692 val->totalram = managed_pages;
3693 val->sharedram = node_page_state(nid, NR_SHMEM);
3694 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3695 #ifdef CONFIG_HIGHMEM
3696 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3697 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3703 val->mem_unit = PAGE_SIZE;
3708 * Determine whether the node should be displayed or not, depending on whether
3709 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3711 bool skip_free_areas_node(unsigned int flags, int nid)
3714 unsigned int cpuset_mems_cookie;
3716 if (!(flags & SHOW_MEM_FILTER_NODES))
3720 cpuset_mems_cookie = read_mems_allowed_begin();
3721 ret = !node_isset(nid, cpuset_current_mems_allowed);
3722 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3727 #define K(x) ((x) << (PAGE_SHIFT-10))
3729 static void show_migration_types(unsigned char type)
3731 static const char types[MIGRATE_TYPES] = {
3732 [MIGRATE_UNMOVABLE] = 'U',
3733 [MIGRATE_MOVABLE] = 'M',
3734 [MIGRATE_RECLAIMABLE] = 'E',
3735 [MIGRATE_HIGHATOMIC] = 'H',
3737 [MIGRATE_CMA] = 'C',
3739 #ifdef CONFIG_MEMORY_ISOLATION
3740 [MIGRATE_ISOLATE] = 'I',
3743 char tmp[MIGRATE_TYPES + 1];
3747 for (i = 0; i < MIGRATE_TYPES; i++) {
3748 if (type & (1 << i))
3753 printk("(%s) ", tmp);
3757 * Show free area list (used inside shift_scroll-lock stuff)
3758 * We also calculate the percentage fragmentation. We do this by counting the
3759 * memory on each free list with the exception of the first item on the list.
3762 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3765 void show_free_areas(unsigned int filter)
3767 unsigned long free_pcp = 0;
3771 for_each_populated_zone(zone) {
3772 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3775 for_each_online_cpu(cpu)
3776 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3779 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3780 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3781 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3782 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3783 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3784 " free:%lu free_pcp:%lu free_cma:%lu\n",
3785 global_page_state(NR_ACTIVE_ANON),
3786 global_page_state(NR_INACTIVE_ANON),
3787 global_page_state(NR_ISOLATED_ANON),
3788 global_page_state(NR_ACTIVE_FILE),
3789 global_page_state(NR_INACTIVE_FILE),
3790 global_page_state(NR_ISOLATED_FILE),
3791 global_page_state(NR_UNEVICTABLE),
3792 global_page_state(NR_FILE_DIRTY),
3793 global_page_state(NR_WRITEBACK),
3794 global_page_state(NR_UNSTABLE_NFS),
3795 global_page_state(NR_SLAB_RECLAIMABLE),
3796 global_page_state(NR_SLAB_UNRECLAIMABLE),
3797 global_page_state(NR_FILE_MAPPED),
3798 global_page_state(NR_SHMEM),
3799 global_page_state(NR_PAGETABLE),
3800 global_page_state(NR_BOUNCE),
3801 global_page_state(NR_FREE_PAGES),
3803 global_page_state(NR_FREE_CMA_PAGES));
3805 for_each_populated_zone(zone) {
3808 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3812 for_each_online_cpu(cpu)
3813 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3821 " active_anon:%lukB"
3822 " inactive_anon:%lukB"
3823 " active_file:%lukB"
3824 " inactive_file:%lukB"
3825 " unevictable:%lukB"
3826 " isolated(anon):%lukB"
3827 " isolated(file):%lukB"
3835 " slab_reclaimable:%lukB"
3836 " slab_unreclaimable:%lukB"
3837 " kernel_stack:%lukB"
3844 " writeback_tmp:%lukB"
3845 " pages_scanned:%lu"
3846 " all_unreclaimable? %s"
3849 K(zone_page_state(zone, NR_FREE_PAGES)),
3850 K(min_wmark_pages(zone)),
3851 K(low_wmark_pages(zone)),
3852 K(high_wmark_pages(zone)),
3853 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3854 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3855 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3856 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3857 K(zone_page_state(zone, NR_UNEVICTABLE)),
3858 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3859 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3860 K(zone->present_pages),
3861 K(zone->managed_pages),
3862 K(zone_page_state(zone, NR_MLOCK)),
3863 K(zone_page_state(zone, NR_FILE_DIRTY)),
3864 K(zone_page_state(zone, NR_WRITEBACK)),
3865 K(zone_page_state(zone, NR_FILE_MAPPED)),
3866 K(zone_page_state(zone, NR_SHMEM)),
3867 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3868 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3869 zone_page_state(zone, NR_KERNEL_STACK) *
3871 K(zone_page_state(zone, NR_PAGETABLE)),
3872 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3873 K(zone_page_state(zone, NR_BOUNCE)),
3875 K(this_cpu_read(zone->pageset->pcp.count)),
3876 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3877 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3878 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3879 (!zone_reclaimable(zone) ? "yes" : "no")
3881 printk("lowmem_reserve[]:");
3882 for (i = 0; i < MAX_NR_ZONES; i++)
3883 printk(" %ld", zone->lowmem_reserve[i]);
3887 for_each_populated_zone(zone) {
3889 unsigned long nr[MAX_ORDER], flags, total = 0;
3890 unsigned char types[MAX_ORDER];
3892 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3895 printk("%s: ", zone->name);
3897 spin_lock_irqsave(&zone->lock, flags);
3898 for (order = 0; order < MAX_ORDER; order++) {
3899 struct free_area *area = &zone->free_area[order];
3902 nr[order] = area->nr_free;
3903 total += nr[order] << order;
3906 for (type = 0; type < MIGRATE_TYPES; type++) {
3907 if (!list_empty(&area->free_list[type]))
3908 types[order] |= 1 << type;
3911 spin_unlock_irqrestore(&zone->lock, flags);
3912 for (order = 0; order < MAX_ORDER; order++) {
3913 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3915 show_migration_types(types[order]);
3917 printk("= %lukB\n", K(total));
3920 hugetlb_show_meminfo();
3922 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3924 show_swap_cache_info();
3927 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3929 zoneref->zone = zone;
3930 zoneref->zone_idx = zone_idx(zone);
3934 * Builds allocation fallback zone lists.
3936 * Add all populated zones of a node to the zonelist.
3938 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3942 enum zone_type zone_type = MAX_NR_ZONES;
3946 zone = pgdat->node_zones + zone_type;
3947 if (populated_zone(zone)) {
3948 zoneref_set_zone(zone,
3949 &zonelist->_zonerefs[nr_zones++]);
3950 check_highest_zone(zone_type);
3952 } while (zone_type);
3960 * 0 = automatic detection of better ordering.
3961 * 1 = order by ([node] distance, -zonetype)
3962 * 2 = order by (-zonetype, [node] distance)
3964 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3965 * the same zonelist. So only NUMA can configure this param.
3967 #define ZONELIST_ORDER_DEFAULT 0
3968 #define ZONELIST_ORDER_NODE 1
3969 #define ZONELIST_ORDER_ZONE 2
3971 /* zonelist order in the kernel.
3972 * set_zonelist_order() will set this to NODE or ZONE.
3974 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3975 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3979 /* The value user specified ....changed by config */
3980 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3981 /* string for sysctl */
3982 #define NUMA_ZONELIST_ORDER_LEN 16
3983 char numa_zonelist_order[16] = "default";
3986 * interface for configure zonelist ordering.
3987 * command line option "numa_zonelist_order"
3988 * = "[dD]efault - default, automatic configuration.
3989 * = "[nN]ode - order by node locality, then by zone within node
3990 * = "[zZ]one - order by zone, then by locality within zone
3993 static int __parse_numa_zonelist_order(char *s)
3995 if (*s == 'd' || *s == 'D') {
3996 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3997 } else if (*s == 'n' || *s == 'N') {
3998 user_zonelist_order = ZONELIST_ORDER_NODE;
3999 } else if (*s == 'z' || *s == 'Z') {
4000 user_zonelist_order = ZONELIST_ORDER_ZONE;
4003 "Ignoring invalid numa_zonelist_order value: "
4010 static __init int setup_numa_zonelist_order(char *s)
4017 ret = __parse_numa_zonelist_order(s);
4019 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4023 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4026 * sysctl handler for numa_zonelist_order
4028 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4029 void __user *buffer, size_t *length,
4032 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4034 static DEFINE_MUTEX(zl_order_mutex);
4036 mutex_lock(&zl_order_mutex);
4038 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4042 strcpy(saved_string, (char *)table->data);
4044 ret = proc_dostring(table, write, buffer, length, ppos);
4048 int oldval = user_zonelist_order;
4050 ret = __parse_numa_zonelist_order((char *)table->data);
4053 * bogus value. restore saved string
4055 strncpy((char *)table->data, saved_string,
4056 NUMA_ZONELIST_ORDER_LEN);
4057 user_zonelist_order = oldval;
4058 } else if (oldval != user_zonelist_order) {
4059 mutex_lock(&zonelists_mutex);
4060 build_all_zonelists(NULL, NULL);
4061 mutex_unlock(&zonelists_mutex);
4065 mutex_unlock(&zl_order_mutex);
4070 #define MAX_NODE_LOAD (nr_online_nodes)
4071 static int node_load[MAX_NUMNODES];
4074 * find_next_best_node - find the next node that should appear in a given node's fallback list
4075 * @node: node whose fallback list we're appending
4076 * @used_node_mask: nodemask_t of already used nodes
4078 * We use a number of factors to determine which is the next node that should
4079 * appear on a given node's fallback list. The node should not have appeared
4080 * already in @node's fallback list, and it should be the next closest node
4081 * according to the distance array (which contains arbitrary distance values
4082 * from each node to each node in the system), and should also prefer nodes
4083 * with no CPUs, since presumably they'll have very little allocation pressure
4084 * on them otherwise.
4085 * It returns -1 if no node is found.
4087 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4090 int min_val = INT_MAX;
4091 int best_node = NUMA_NO_NODE;
4092 const struct cpumask *tmp = cpumask_of_node(0);
4094 /* Use the local node if we haven't already */
4095 if (!node_isset(node, *used_node_mask)) {
4096 node_set(node, *used_node_mask);
4100 for_each_node_state(n, N_MEMORY) {
4102 /* Don't want a node to appear more than once */
4103 if (node_isset(n, *used_node_mask))
4106 /* Use the distance array to find the distance */
4107 val = node_distance(node, n);
4109 /* Penalize nodes under us ("prefer the next node") */
4112 /* Give preference to headless and unused nodes */
4113 tmp = cpumask_of_node(n);
4114 if (!cpumask_empty(tmp))
4115 val += PENALTY_FOR_NODE_WITH_CPUS;
4117 /* Slight preference for less loaded node */
4118 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4119 val += node_load[n];
4121 if (val < min_val) {
4128 node_set(best_node, *used_node_mask);
4135 * Build zonelists ordered by node and zones within node.
4136 * This results in maximum locality--normal zone overflows into local
4137 * DMA zone, if any--but risks exhausting DMA zone.
4139 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4142 struct zonelist *zonelist;
4144 zonelist = &pgdat->node_zonelists[0];
4145 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4147 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4148 zonelist->_zonerefs[j].zone = NULL;
4149 zonelist->_zonerefs[j].zone_idx = 0;
4153 * Build gfp_thisnode zonelists
4155 static void build_thisnode_zonelists(pg_data_t *pgdat)
4158 struct zonelist *zonelist;
4160 zonelist = &pgdat->node_zonelists[1];
4161 j = build_zonelists_node(pgdat, zonelist, 0);
4162 zonelist->_zonerefs[j].zone = NULL;
4163 zonelist->_zonerefs[j].zone_idx = 0;
4167 * Build zonelists ordered by zone and nodes within zones.
4168 * This results in conserving DMA zone[s] until all Normal memory is
4169 * exhausted, but results in overflowing to remote node while memory
4170 * may still exist in local DMA zone.
4172 static int node_order[MAX_NUMNODES];
4174 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4177 int zone_type; /* needs to be signed */
4179 struct zonelist *zonelist;
4181 zonelist = &pgdat->node_zonelists[0];
4183 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4184 for (j = 0; j < nr_nodes; j++) {
4185 node = node_order[j];
4186 z = &NODE_DATA(node)->node_zones[zone_type];
4187 if (populated_zone(z)) {
4189 &zonelist->_zonerefs[pos++]);
4190 check_highest_zone(zone_type);
4194 zonelist->_zonerefs[pos].zone = NULL;
4195 zonelist->_zonerefs[pos].zone_idx = 0;
4198 #if defined(CONFIG_64BIT)
4200 * Devices that require DMA32/DMA are relatively rare and do not justify a
4201 * penalty to every machine in case the specialised case applies. Default
4202 * to Node-ordering on 64-bit NUMA machines
4204 static int default_zonelist_order(void)
4206 return ZONELIST_ORDER_NODE;
4210 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4211 * by the kernel. If processes running on node 0 deplete the low memory zone
4212 * then reclaim will occur more frequency increasing stalls and potentially
4213 * be easier to OOM if a large percentage of the zone is under writeback or
4214 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4215 * Hence, default to zone ordering on 32-bit.
4217 static int default_zonelist_order(void)
4219 return ZONELIST_ORDER_ZONE;
4221 #endif /* CONFIG_64BIT */
4223 static void set_zonelist_order(void)
4225 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4226 current_zonelist_order = default_zonelist_order();
4228 current_zonelist_order = user_zonelist_order;
4231 static void build_zonelists(pg_data_t *pgdat)
4235 nodemask_t used_mask;
4236 int local_node, prev_node;
4237 struct zonelist *zonelist;
4238 unsigned int order = current_zonelist_order;
4240 /* initialize zonelists */
4241 for (i = 0; i < MAX_ZONELISTS; i++) {
4242 zonelist = pgdat->node_zonelists + i;
4243 zonelist->_zonerefs[0].zone = NULL;
4244 zonelist->_zonerefs[0].zone_idx = 0;
4247 /* NUMA-aware ordering of nodes */
4248 local_node = pgdat->node_id;
4249 load = nr_online_nodes;
4250 prev_node = local_node;
4251 nodes_clear(used_mask);
4253 memset(node_order, 0, sizeof(node_order));
4256 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4258 * We don't want to pressure a particular node.
4259 * So adding penalty to the first node in same
4260 * distance group to make it round-robin.
4262 if (node_distance(local_node, node) !=
4263 node_distance(local_node, prev_node))
4264 node_load[node] = load;
4268 if (order == ZONELIST_ORDER_NODE)
4269 build_zonelists_in_node_order(pgdat, node);
4271 node_order[j++] = node; /* remember order */
4274 if (order == ZONELIST_ORDER_ZONE) {
4275 /* calculate node order -- i.e., DMA last! */
4276 build_zonelists_in_zone_order(pgdat, j);
4279 build_thisnode_zonelists(pgdat);
4282 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4284 * Return node id of node used for "local" allocations.
4285 * I.e., first node id of first zone in arg node's generic zonelist.
4286 * Used for initializing percpu 'numa_mem', which is used primarily
4287 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4289 int local_memory_node(int node)
4293 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4294 gfp_zone(GFP_KERNEL),
4301 #else /* CONFIG_NUMA */
4303 static void set_zonelist_order(void)
4305 current_zonelist_order = ZONELIST_ORDER_ZONE;
4308 static void build_zonelists(pg_data_t *pgdat)
4310 int node, local_node;
4312 struct zonelist *zonelist;
4314 local_node = pgdat->node_id;
4316 zonelist = &pgdat->node_zonelists[0];
4317 j = build_zonelists_node(pgdat, zonelist, 0);
4320 * Now we build the zonelist so that it contains the zones
4321 * of all the other nodes.
4322 * We don't want to pressure a particular node, so when
4323 * building the zones for node N, we make sure that the
4324 * zones coming right after the local ones are those from
4325 * node N+1 (modulo N)
4327 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4328 if (!node_online(node))
4330 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4332 for (node = 0; node < local_node; node++) {
4333 if (!node_online(node))
4335 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4338 zonelist->_zonerefs[j].zone = NULL;
4339 zonelist->_zonerefs[j].zone_idx = 0;
4342 #endif /* CONFIG_NUMA */
4345 * Boot pageset table. One per cpu which is going to be used for all
4346 * zones and all nodes. The parameters will be set in such a way
4347 * that an item put on a list will immediately be handed over to
4348 * the buddy list. This is safe since pageset manipulation is done
4349 * with interrupts disabled.
4351 * The boot_pagesets must be kept even after bootup is complete for
4352 * unused processors and/or zones. They do play a role for bootstrapping
4353 * hotplugged processors.
4355 * zoneinfo_show() and maybe other functions do
4356 * not check if the processor is online before following the pageset pointer.
4357 * Other parts of the kernel may not check if the zone is available.
4359 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4360 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4361 static void setup_zone_pageset(struct zone *zone);
4364 * Global mutex to protect against size modification of zonelists
4365 * as well as to serialize pageset setup for the new populated zone.
4367 DEFINE_MUTEX(zonelists_mutex);
4369 /* return values int ....just for stop_machine() */
4370 static int __build_all_zonelists(void *data)
4374 pg_data_t *self = data;
4377 memset(node_load, 0, sizeof(node_load));
4380 if (self && !node_online(self->node_id)) {
4381 build_zonelists(self);
4384 for_each_online_node(nid) {
4385 pg_data_t *pgdat = NODE_DATA(nid);
4387 build_zonelists(pgdat);
4391 * Initialize the boot_pagesets that are going to be used
4392 * for bootstrapping processors. The real pagesets for
4393 * each zone will be allocated later when the per cpu
4394 * allocator is available.
4396 * boot_pagesets are used also for bootstrapping offline
4397 * cpus if the system is already booted because the pagesets
4398 * are needed to initialize allocators on a specific cpu too.
4399 * F.e. the percpu allocator needs the page allocator which
4400 * needs the percpu allocator in order to allocate its pagesets
4401 * (a chicken-egg dilemma).
4403 for_each_possible_cpu(cpu) {
4404 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4406 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4408 * We now know the "local memory node" for each node--
4409 * i.e., the node of the first zone in the generic zonelist.
4410 * Set up numa_mem percpu variable for on-line cpus. During
4411 * boot, only the boot cpu should be on-line; we'll init the
4412 * secondary cpus' numa_mem as they come on-line. During
4413 * node/memory hotplug, we'll fixup all on-line cpus.
4415 if (cpu_online(cpu))
4416 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4423 static noinline void __init
4424 build_all_zonelists_init(void)
4426 __build_all_zonelists(NULL);
4427 mminit_verify_zonelist();
4428 cpuset_init_current_mems_allowed();
4432 * Called with zonelists_mutex held always
4433 * unless system_state == SYSTEM_BOOTING.
4435 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4436 * [we're only called with non-NULL zone through __meminit paths] and
4437 * (2) call of __init annotated helper build_all_zonelists_init
4438 * [protected by SYSTEM_BOOTING].
4440 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4442 set_zonelist_order();
4444 if (system_state == SYSTEM_BOOTING) {
4445 build_all_zonelists_init();
4447 #ifdef CONFIG_MEMORY_HOTPLUG
4449 setup_zone_pageset(zone);
4451 /* we have to stop all cpus to guarantee there is no user
4453 stop_machine(__build_all_zonelists, pgdat, NULL);
4454 /* cpuset refresh routine should be here */
4456 vm_total_pages = nr_free_pagecache_pages();
4458 * Disable grouping by mobility if the number of pages in the
4459 * system is too low to allow the mechanism to work. It would be
4460 * more accurate, but expensive to check per-zone. This check is
4461 * made on memory-hotadd so a system can start with mobility
4462 * disabled and enable it later
4464 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4465 page_group_by_mobility_disabled = 1;
4467 page_group_by_mobility_disabled = 0;
4469 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4470 "Total pages: %ld\n",
4472 zonelist_order_name[current_zonelist_order],
4473 page_group_by_mobility_disabled ? "off" : "on",
4476 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4481 * Helper functions to size the waitqueue hash table.
4482 * Essentially these want to choose hash table sizes sufficiently
4483 * large so that collisions trying to wait on pages are rare.
4484 * But in fact, the number of active page waitqueues on typical
4485 * systems is ridiculously low, less than 200. So this is even
4486 * conservative, even though it seems large.
4488 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4489 * waitqueues, i.e. the size of the waitq table given the number of pages.
4491 #define PAGES_PER_WAITQUEUE 256
4493 #ifndef CONFIG_MEMORY_HOTPLUG
4494 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4496 unsigned long size = 1;
4498 pages /= PAGES_PER_WAITQUEUE;
4500 while (size < pages)
4504 * Once we have dozens or even hundreds of threads sleeping
4505 * on IO we've got bigger problems than wait queue collision.
4506 * Limit the size of the wait table to a reasonable size.
4508 size = min(size, 4096UL);
4510 return max(size, 4UL);
4514 * A zone's size might be changed by hot-add, so it is not possible to determine
4515 * a suitable size for its wait_table. So we use the maximum size now.
4517 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4519 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4520 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4521 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4523 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4524 * or more by the traditional way. (See above). It equals:
4526 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4527 * ia64(16K page size) : = ( 8G + 4M)byte.
4528 * powerpc (64K page size) : = (32G +16M)byte.
4530 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4537 * This is an integer logarithm so that shifts can be used later
4538 * to extract the more random high bits from the multiplicative
4539 * hash function before the remainder is taken.
4541 static inline unsigned long wait_table_bits(unsigned long size)
4547 * Initially all pages are reserved - free ones are freed
4548 * up by free_all_bootmem() once the early boot process is
4549 * done. Non-atomic initialization, single-pass.
4551 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4552 unsigned long start_pfn, enum memmap_context context)
4554 pg_data_t *pgdat = NODE_DATA(nid);
4555 unsigned long end_pfn = start_pfn + size;
4558 unsigned long nr_initialised = 0;
4560 if (highest_memmap_pfn < end_pfn - 1)
4561 highest_memmap_pfn = end_pfn - 1;
4563 z = &pgdat->node_zones[zone];
4564 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4566 * There can be holes in boot-time mem_map[]s
4567 * handed to this function. They do not
4568 * exist on hotplugged memory.
4570 if (context == MEMMAP_EARLY) {
4571 if (!early_pfn_valid(pfn))
4573 if (!early_pfn_in_nid(pfn, nid))
4575 if (!update_defer_init(pgdat, pfn, end_pfn,
4581 * Mark the block movable so that blocks are reserved for
4582 * movable at startup. This will force kernel allocations
4583 * to reserve their blocks rather than leaking throughout
4584 * the address space during boot when many long-lived
4585 * kernel allocations are made.
4587 * bitmap is created for zone's valid pfn range. but memmap
4588 * can be created for invalid pages (for alignment)
4589 * check here not to call set_pageblock_migratetype() against
4592 if (!(pfn & (pageblock_nr_pages - 1))) {
4593 struct page *page = pfn_to_page(pfn);
4595 __init_single_page(page, pfn, zone, nid);
4596 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4598 __init_single_pfn(pfn, zone, nid);
4603 static void __meminit zone_init_free_lists(struct zone *zone)
4605 unsigned int order, t;
4606 for_each_migratetype_order(order, t) {
4607 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4608 zone->free_area[order].nr_free = 0;
4612 #ifndef __HAVE_ARCH_MEMMAP_INIT
4613 #define memmap_init(size, nid, zone, start_pfn) \
4614 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4617 static int zone_batchsize(struct zone *zone)
4623 * The per-cpu-pages pools are set to around 1000th of the
4624 * size of the zone. But no more than 1/2 of a meg.
4626 * OK, so we don't know how big the cache is. So guess.
4628 batch = zone->managed_pages / 1024;
4629 if (batch * PAGE_SIZE > 512 * 1024)
4630 batch = (512 * 1024) / PAGE_SIZE;
4631 batch /= 4; /* We effectively *= 4 below */
4636 * Clamp the batch to a 2^n - 1 value. Having a power
4637 * of 2 value was found to be more likely to have
4638 * suboptimal cache aliasing properties in some cases.
4640 * For example if 2 tasks are alternately allocating
4641 * batches of pages, one task can end up with a lot
4642 * of pages of one half of the possible page colors
4643 * and the other with pages of the other colors.
4645 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4650 /* The deferral and batching of frees should be suppressed under NOMMU
4653 * The problem is that NOMMU needs to be able to allocate large chunks
4654 * of contiguous memory as there's no hardware page translation to
4655 * assemble apparent contiguous memory from discontiguous pages.
4657 * Queueing large contiguous runs of pages for batching, however,
4658 * causes the pages to actually be freed in smaller chunks. As there
4659 * can be a significant delay between the individual batches being
4660 * recycled, this leads to the once large chunks of space being
4661 * fragmented and becoming unavailable for high-order allocations.
4668 * pcp->high and pcp->batch values are related and dependent on one another:
4669 * ->batch must never be higher then ->high.
4670 * The following function updates them in a safe manner without read side
4673 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4674 * those fields changing asynchronously (acording the the above rule).
4676 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4677 * outside of boot time (or some other assurance that no concurrent updaters
4680 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4681 unsigned long batch)
4683 /* start with a fail safe value for batch */
4687 /* Update high, then batch, in order */
4694 /* a companion to pageset_set_high() */
4695 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4697 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4700 static void pageset_init(struct per_cpu_pageset *p)
4702 struct per_cpu_pages *pcp;
4705 memset(p, 0, sizeof(*p));
4709 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4710 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4713 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4716 pageset_set_batch(p, batch);
4720 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4721 * to the value high for the pageset p.
4723 static void pageset_set_high(struct per_cpu_pageset *p,
4726 unsigned long batch = max(1UL, high / 4);
4727 if ((high / 4) > (PAGE_SHIFT * 8))
4728 batch = PAGE_SHIFT * 8;
4730 pageset_update(&p->pcp, high, batch);
4733 static void pageset_set_high_and_batch(struct zone *zone,
4734 struct per_cpu_pageset *pcp)
4736 if (percpu_pagelist_fraction)
4737 pageset_set_high(pcp,
4738 (zone->managed_pages /
4739 percpu_pagelist_fraction));
4741 pageset_set_batch(pcp, zone_batchsize(zone));
4744 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4746 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4749 pageset_set_high_and_batch(zone, pcp);
4752 static void __meminit setup_zone_pageset(struct zone *zone)
4755 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4756 for_each_possible_cpu(cpu)
4757 zone_pageset_init(zone, cpu);
4761 * Allocate per cpu pagesets and initialize them.
4762 * Before this call only boot pagesets were available.
4764 void __init setup_per_cpu_pageset(void)
4768 for_each_populated_zone(zone)
4769 setup_zone_pageset(zone);
4772 static noinline __init_refok
4773 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4779 * The per-page waitqueue mechanism uses hashed waitqueues
4782 zone->wait_table_hash_nr_entries =
4783 wait_table_hash_nr_entries(zone_size_pages);
4784 zone->wait_table_bits =
4785 wait_table_bits(zone->wait_table_hash_nr_entries);
4786 alloc_size = zone->wait_table_hash_nr_entries
4787 * sizeof(wait_queue_head_t);
4789 if (!slab_is_available()) {
4790 zone->wait_table = (wait_queue_head_t *)
4791 memblock_virt_alloc_node_nopanic(
4792 alloc_size, zone->zone_pgdat->node_id);
4795 * This case means that a zone whose size was 0 gets new memory
4796 * via memory hot-add.
4797 * But it may be the case that a new node was hot-added. In
4798 * this case vmalloc() will not be able to use this new node's
4799 * memory - this wait_table must be initialized to use this new
4800 * node itself as well.
4801 * To use this new node's memory, further consideration will be
4804 zone->wait_table = vmalloc(alloc_size);
4806 if (!zone->wait_table)
4809 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4810 init_waitqueue_head(zone->wait_table + i);
4815 static __meminit void zone_pcp_init(struct zone *zone)
4818 * per cpu subsystem is not up at this point. The following code
4819 * relies on the ability of the linker to provide the
4820 * offset of a (static) per cpu variable into the per cpu area.
4822 zone->pageset = &boot_pageset;
4824 if (populated_zone(zone))
4825 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4826 zone->name, zone->present_pages,
4827 zone_batchsize(zone));
4830 int __meminit init_currently_empty_zone(struct zone *zone,
4831 unsigned long zone_start_pfn,
4834 struct pglist_data *pgdat = zone->zone_pgdat;
4836 ret = zone_wait_table_init(zone, size);
4839 pgdat->nr_zones = zone_idx(zone) + 1;
4841 zone->zone_start_pfn = zone_start_pfn;
4843 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4844 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4846 (unsigned long)zone_idx(zone),
4847 zone_start_pfn, (zone_start_pfn + size));
4849 zone_init_free_lists(zone);
4854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4855 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4858 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4860 int __meminit __early_pfn_to_nid(unsigned long pfn,
4861 struct mminit_pfnnid_cache *state)
4863 unsigned long start_pfn, end_pfn;
4866 if (state->last_start <= pfn && pfn < state->last_end)
4867 return state->last_nid;
4869 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4871 state->last_start = start_pfn;
4872 state->last_end = end_pfn;
4873 state->last_nid = nid;
4878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4881 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4882 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4883 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4885 * If an architecture guarantees that all ranges registered contain no holes
4886 * and may be freed, this this function may be used instead of calling
4887 * memblock_free_early_nid() manually.
4889 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4891 unsigned long start_pfn, end_pfn;
4894 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4895 start_pfn = min(start_pfn, max_low_pfn);
4896 end_pfn = min(end_pfn, max_low_pfn);
4898 if (start_pfn < end_pfn)
4899 memblock_free_early_nid(PFN_PHYS(start_pfn),
4900 (end_pfn - start_pfn) << PAGE_SHIFT,
4906 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4907 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4909 * If an architecture guarantees that all ranges registered contain no holes and may
4910 * be freed, this function may be used instead of calling memory_present() manually.
4912 void __init sparse_memory_present_with_active_regions(int nid)
4914 unsigned long start_pfn, end_pfn;
4917 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4918 memory_present(this_nid, start_pfn, end_pfn);
4922 * get_pfn_range_for_nid - Return the start and end page frames for a node
4923 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4924 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4925 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4927 * It returns the start and end page frame of a node based on information
4928 * provided by memblock_set_node(). If called for a node
4929 * with no available memory, a warning is printed and the start and end
4932 void __meminit get_pfn_range_for_nid(unsigned int nid,
4933 unsigned long *start_pfn, unsigned long *end_pfn)
4935 unsigned long this_start_pfn, this_end_pfn;
4941 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4942 *start_pfn = min(*start_pfn, this_start_pfn);
4943 *end_pfn = max(*end_pfn, this_end_pfn);
4946 if (*start_pfn == -1UL)
4951 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4952 * assumption is made that zones within a node are ordered in monotonic
4953 * increasing memory addresses so that the "highest" populated zone is used
4955 static void __init find_usable_zone_for_movable(void)
4958 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4959 if (zone_index == ZONE_MOVABLE)
4962 if (arch_zone_highest_possible_pfn[zone_index] >
4963 arch_zone_lowest_possible_pfn[zone_index])
4967 VM_BUG_ON(zone_index == -1);
4968 movable_zone = zone_index;
4972 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4973 * because it is sized independent of architecture. Unlike the other zones,
4974 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4975 * in each node depending on the size of each node and how evenly kernelcore
4976 * is distributed. This helper function adjusts the zone ranges
4977 * provided by the architecture for a given node by using the end of the
4978 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4979 * zones within a node are in order of monotonic increases memory addresses
4981 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4982 unsigned long zone_type,
4983 unsigned long node_start_pfn,
4984 unsigned long node_end_pfn,
4985 unsigned long *zone_start_pfn,
4986 unsigned long *zone_end_pfn)
4988 /* Only adjust if ZONE_MOVABLE is on this node */
4989 if (zone_movable_pfn[nid]) {
4990 /* Size ZONE_MOVABLE */
4991 if (zone_type == ZONE_MOVABLE) {
4992 *zone_start_pfn = zone_movable_pfn[nid];
4993 *zone_end_pfn = min(node_end_pfn,
4994 arch_zone_highest_possible_pfn[movable_zone]);
4996 /* Adjust for ZONE_MOVABLE starting within this range */
4997 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4998 *zone_end_pfn > zone_movable_pfn[nid]) {
4999 *zone_end_pfn = zone_movable_pfn[nid];
5001 /* Check if this whole range is within ZONE_MOVABLE */
5002 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5003 *zone_start_pfn = *zone_end_pfn;
5008 * Return the number of pages a zone spans in a node, including holes
5009 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5011 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5012 unsigned long zone_type,
5013 unsigned long node_start_pfn,
5014 unsigned long node_end_pfn,
5015 unsigned long *ignored)
5017 unsigned long zone_start_pfn, zone_end_pfn;
5019 /* When hotadd a new node from cpu_up(), the node should be empty */
5020 if (!node_start_pfn && !node_end_pfn)
5023 /* Get the start and end of the zone */
5024 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5025 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5026 adjust_zone_range_for_zone_movable(nid, zone_type,
5027 node_start_pfn, node_end_pfn,
5028 &zone_start_pfn, &zone_end_pfn);
5030 /* Check that this node has pages within the zone's required range */
5031 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5034 /* Move the zone boundaries inside the node if necessary */
5035 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5036 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5038 /* Return the spanned pages */
5039 return zone_end_pfn - zone_start_pfn;
5043 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5044 * then all holes in the requested range will be accounted for.
5046 unsigned long __meminit __absent_pages_in_range(int nid,
5047 unsigned long range_start_pfn,
5048 unsigned long range_end_pfn)
5050 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5051 unsigned long start_pfn, end_pfn;
5054 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5055 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5056 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5057 nr_absent -= end_pfn - start_pfn;
5063 * absent_pages_in_range - Return number of page frames in holes within a range
5064 * @start_pfn: The start PFN to start searching for holes
5065 * @end_pfn: The end PFN to stop searching for holes
5067 * It returns the number of pages frames in memory holes within a range.
5069 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5070 unsigned long end_pfn)
5072 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5075 /* Return the number of page frames in holes in a zone on a node */
5076 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5077 unsigned long zone_type,
5078 unsigned long node_start_pfn,
5079 unsigned long node_end_pfn,
5080 unsigned long *ignored)
5082 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5083 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5084 unsigned long zone_start_pfn, zone_end_pfn;
5086 /* When hotadd a new node from cpu_up(), the node should be empty */
5087 if (!node_start_pfn && !node_end_pfn)
5090 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5091 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5093 adjust_zone_range_for_zone_movable(nid, zone_type,
5094 node_start_pfn, node_end_pfn,
5095 &zone_start_pfn, &zone_end_pfn);
5096 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5099 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5100 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5101 unsigned long zone_type,
5102 unsigned long node_start_pfn,
5103 unsigned long node_end_pfn,
5104 unsigned long *zones_size)
5106 return zones_size[zone_type];
5109 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5110 unsigned long zone_type,
5111 unsigned long node_start_pfn,
5112 unsigned long node_end_pfn,
5113 unsigned long *zholes_size)
5118 return zholes_size[zone_type];
5121 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5123 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5124 unsigned long node_start_pfn,
5125 unsigned long node_end_pfn,
5126 unsigned long *zones_size,
5127 unsigned long *zholes_size)
5129 unsigned long realtotalpages = 0, totalpages = 0;
5132 for (i = 0; i < MAX_NR_ZONES; i++) {
5133 struct zone *zone = pgdat->node_zones + i;
5134 unsigned long size, real_size;
5136 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5140 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5141 node_start_pfn, node_end_pfn,
5143 zone->spanned_pages = size;
5144 zone->present_pages = real_size;
5147 realtotalpages += real_size;
5150 pgdat->node_spanned_pages = totalpages;
5151 pgdat->node_present_pages = realtotalpages;
5152 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5156 #ifndef CONFIG_SPARSEMEM
5158 * Calculate the size of the zone->blockflags rounded to an unsigned long
5159 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5160 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5161 * round what is now in bits to nearest long in bits, then return it in
5164 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5166 unsigned long usemapsize;
5168 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5169 usemapsize = roundup(zonesize, pageblock_nr_pages);
5170 usemapsize = usemapsize >> pageblock_order;
5171 usemapsize *= NR_PAGEBLOCK_BITS;
5172 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5174 return usemapsize / 8;
5177 static void __init setup_usemap(struct pglist_data *pgdat,
5179 unsigned long zone_start_pfn,
5180 unsigned long zonesize)
5182 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5183 zone->pageblock_flags = NULL;
5185 zone->pageblock_flags =
5186 memblock_virt_alloc_node_nopanic(usemapsize,
5190 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5191 unsigned long zone_start_pfn, unsigned long zonesize) {}
5192 #endif /* CONFIG_SPARSEMEM */
5194 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5196 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5197 void __paginginit set_pageblock_order(void)
5201 /* Check that pageblock_nr_pages has not already been setup */
5202 if (pageblock_order)
5205 if (HPAGE_SHIFT > PAGE_SHIFT)
5206 order = HUGETLB_PAGE_ORDER;
5208 order = MAX_ORDER - 1;
5211 * Assume the largest contiguous order of interest is a huge page.
5212 * This value may be variable depending on boot parameters on IA64 and
5215 pageblock_order = order;
5217 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5220 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5221 * is unused as pageblock_order is set at compile-time. See
5222 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5225 void __paginginit set_pageblock_order(void)
5229 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5231 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5232 unsigned long present_pages)
5234 unsigned long pages = spanned_pages;
5237 * Provide a more accurate estimation if there are holes within
5238 * the zone and SPARSEMEM is in use. If there are holes within the
5239 * zone, each populated memory region may cost us one or two extra
5240 * memmap pages due to alignment because memmap pages for each
5241 * populated regions may not naturally algined on page boundary.
5242 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5244 if (spanned_pages > present_pages + (present_pages >> 4) &&
5245 IS_ENABLED(CONFIG_SPARSEMEM))
5246 pages = present_pages;
5248 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5252 * Set up the zone data structures:
5253 * - mark all pages reserved
5254 * - mark all memory queues empty
5255 * - clear the memory bitmaps
5257 * NOTE: pgdat should get zeroed by caller.
5259 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5262 int nid = pgdat->node_id;
5263 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5266 pgdat_resize_init(pgdat);
5267 #ifdef CONFIG_NUMA_BALANCING
5268 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5269 pgdat->numabalancing_migrate_nr_pages = 0;
5270 pgdat->numabalancing_migrate_next_window = jiffies;
5272 init_waitqueue_head(&pgdat->kswapd_wait);
5273 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5274 pgdat_page_ext_init(pgdat);
5276 for (j = 0; j < MAX_NR_ZONES; j++) {
5277 struct zone *zone = pgdat->node_zones + j;
5278 unsigned long size, realsize, freesize, memmap_pages;
5280 size = zone->spanned_pages;
5281 realsize = freesize = zone->present_pages;
5284 * Adjust freesize so that it accounts for how much memory
5285 * is used by this zone for memmap. This affects the watermark
5286 * and per-cpu initialisations
5288 memmap_pages = calc_memmap_size(size, realsize);
5289 if (!is_highmem_idx(j)) {
5290 if (freesize >= memmap_pages) {
5291 freesize -= memmap_pages;
5294 " %s zone: %lu pages used for memmap\n",
5295 zone_names[j], memmap_pages);
5298 " %s zone: %lu pages exceeds freesize %lu\n",
5299 zone_names[j], memmap_pages, freesize);
5302 /* Account for reserved pages */
5303 if (j == 0 && freesize > dma_reserve) {
5304 freesize -= dma_reserve;
5305 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5306 zone_names[0], dma_reserve);
5309 if (!is_highmem_idx(j))
5310 nr_kernel_pages += freesize;
5311 /* Charge for highmem memmap if there are enough kernel pages */
5312 else if (nr_kernel_pages > memmap_pages * 2)
5313 nr_kernel_pages -= memmap_pages;
5314 nr_all_pages += freesize;
5317 * Set an approximate value for lowmem here, it will be adjusted
5318 * when the bootmem allocator frees pages into the buddy system.
5319 * And all highmem pages will be managed by the buddy system.
5321 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5324 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5326 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5328 zone->name = zone_names[j];
5329 spin_lock_init(&zone->lock);
5330 spin_lock_init(&zone->lru_lock);
5331 zone_seqlock_init(zone);
5332 zone->zone_pgdat = pgdat;
5333 zone_pcp_init(zone);
5335 /* For bootup, initialized properly in watermark setup */
5336 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5338 lruvec_init(&zone->lruvec);
5342 set_pageblock_order();
5343 setup_usemap(pgdat, zone, zone_start_pfn, size);
5344 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5346 memmap_init(size, nid, j, zone_start_pfn);
5347 zone_start_pfn += size;
5351 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5353 unsigned long __maybe_unused start = 0;
5354 unsigned long __maybe_unused offset = 0;
5356 /* Skip empty nodes */
5357 if (!pgdat->node_spanned_pages)
5360 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5361 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5362 offset = pgdat->node_start_pfn - start;
5363 /* ia64 gets its own node_mem_map, before this, without bootmem */
5364 if (!pgdat->node_mem_map) {
5365 unsigned long size, end;
5369 * The zone's endpoints aren't required to be MAX_ORDER
5370 * aligned but the node_mem_map endpoints must be in order
5371 * for the buddy allocator to function correctly.
5373 end = pgdat_end_pfn(pgdat);
5374 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5375 size = (end - start) * sizeof(struct page);
5376 map = alloc_remap(pgdat->node_id, size);
5378 map = memblock_virt_alloc_node_nopanic(size,
5380 pgdat->node_mem_map = map + offset;
5382 #ifndef CONFIG_NEED_MULTIPLE_NODES
5384 * With no DISCONTIG, the global mem_map is just set as node 0's
5386 if (pgdat == NODE_DATA(0)) {
5387 mem_map = NODE_DATA(0)->node_mem_map;
5388 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5389 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5391 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5394 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5397 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5398 unsigned long node_start_pfn, unsigned long *zholes_size)
5400 pg_data_t *pgdat = NODE_DATA(nid);
5401 unsigned long start_pfn = 0;
5402 unsigned long end_pfn = 0;
5404 /* pg_data_t should be reset to zero when it's allocated */
5405 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5407 reset_deferred_meminit(pgdat);
5408 pgdat->node_id = nid;
5409 pgdat->node_start_pfn = node_start_pfn;
5410 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5411 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5412 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5413 (u64)start_pfn << PAGE_SHIFT,
5414 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5416 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5417 zones_size, zholes_size);
5419 alloc_node_mem_map(pgdat);
5420 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5421 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5422 nid, (unsigned long)pgdat,
5423 (unsigned long)pgdat->node_mem_map);
5426 free_area_init_core(pgdat);
5429 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5431 #if MAX_NUMNODES > 1
5433 * Figure out the number of possible node ids.
5435 void __init setup_nr_node_ids(void)
5437 unsigned int highest;
5439 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5440 nr_node_ids = highest + 1;
5445 * node_map_pfn_alignment - determine the maximum internode alignment
5447 * This function should be called after node map is populated and sorted.
5448 * It calculates the maximum power of two alignment which can distinguish
5451 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5452 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5453 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5454 * shifted, 1GiB is enough and this function will indicate so.
5456 * This is used to test whether pfn -> nid mapping of the chosen memory
5457 * model has fine enough granularity to avoid incorrect mapping for the
5458 * populated node map.
5460 * Returns the determined alignment in pfn's. 0 if there is no alignment
5461 * requirement (single node).
5463 unsigned long __init node_map_pfn_alignment(void)
5465 unsigned long accl_mask = 0, last_end = 0;
5466 unsigned long start, end, mask;
5470 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5471 if (!start || last_nid < 0 || last_nid == nid) {
5478 * Start with a mask granular enough to pin-point to the
5479 * start pfn and tick off bits one-by-one until it becomes
5480 * too coarse to separate the current node from the last.
5482 mask = ~((1 << __ffs(start)) - 1);
5483 while (mask && last_end <= (start & (mask << 1)))
5486 /* accumulate all internode masks */
5490 /* convert mask to number of pages */
5491 return ~accl_mask + 1;
5494 /* Find the lowest pfn for a node */
5495 static unsigned long __init find_min_pfn_for_node(int nid)
5497 unsigned long min_pfn = ULONG_MAX;
5498 unsigned long start_pfn;
5501 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5502 min_pfn = min(min_pfn, start_pfn);
5504 if (min_pfn == ULONG_MAX) {
5506 "Could not find start_pfn for node %d\n", nid);
5514 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5516 * It returns the minimum PFN based on information provided via
5517 * memblock_set_node().
5519 unsigned long __init find_min_pfn_with_active_regions(void)
5521 return find_min_pfn_for_node(MAX_NUMNODES);
5525 * early_calculate_totalpages()
5526 * Sum pages in active regions for movable zone.
5527 * Populate N_MEMORY for calculating usable_nodes.
5529 static unsigned long __init early_calculate_totalpages(void)
5531 unsigned long totalpages = 0;
5532 unsigned long start_pfn, end_pfn;
5535 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5536 unsigned long pages = end_pfn - start_pfn;
5538 totalpages += pages;
5540 node_set_state(nid, N_MEMORY);
5546 * Find the PFN the Movable zone begins in each node. Kernel memory
5547 * is spread evenly between nodes as long as the nodes have enough
5548 * memory. When they don't, some nodes will have more kernelcore than
5551 static void __init find_zone_movable_pfns_for_nodes(void)
5554 unsigned long usable_startpfn;
5555 unsigned long kernelcore_node, kernelcore_remaining;
5556 /* save the state before borrow the nodemask */
5557 nodemask_t saved_node_state = node_states[N_MEMORY];
5558 unsigned long totalpages = early_calculate_totalpages();
5559 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5560 struct memblock_region *r;
5562 /* Need to find movable_zone earlier when movable_node is specified. */
5563 find_usable_zone_for_movable();
5566 * If movable_node is specified, ignore kernelcore and movablecore
5569 if (movable_node_is_enabled()) {
5570 for_each_memblock(memory, r) {
5571 if (!memblock_is_hotpluggable(r))
5576 usable_startpfn = PFN_DOWN(r->base);
5577 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5578 min(usable_startpfn, zone_movable_pfn[nid]) :
5586 * If movablecore=nn[KMG] was specified, calculate what size of
5587 * kernelcore that corresponds so that memory usable for
5588 * any allocation type is evenly spread. If both kernelcore
5589 * and movablecore are specified, then the value of kernelcore
5590 * will be used for required_kernelcore if it's greater than
5591 * what movablecore would have allowed.
5593 if (required_movablecore) {
5594 unsigned long corepages;
5597 * Round-up so that ZONE_MOVABLE is at least as large as what
5598 * was requested by the user
5600 required_movablecore =
5601 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5602 required_movablecore = min(totalpages, required_movablecore);
5603 corepages = totalpages - required_movablecore;
5605 required_kernelcore = max(required_kernelcore, corepages);
5609 * If kernelcore was not specified or kernelcore size is larger
5610 * than totalpages, there is no ZONE_MOVABLE.
5612 if (!required_kernelcore || required_kernelcore >= totalpages)
5615 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5616 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5619 /* Spread kernelcore memory as evenly as possible throughout nodes */
5620 kernelcore_node = required_kernelcore / usable_nodes;
5621 for_each_node_state(nid, N_MEMORY) {
5622 unsigned long start_pfn, end_pfn;
5625 * Recalculate kernelcore_node if the division per node
5626 * now exceeds what is necessary to satisfy the requested
5627 * amount of memory for the kernel
5629 if (required_kernelcore < kernelcore_node)
5630 kernelcore_node = required_kernelcore / usable_nodes;
5633 * As the map is walked, we track how much memory is usable
5634 * by the kernel using kernelcore_remaining. When it is
5635 * 0, the rest of the node is usable by ZONE_MOVABLE
5637 kernelcore_remaining = kernelcore_node;
5639 /* Go through each range of PFNs within this node */
5640 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5641 unsigned long size_pages;
5643 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5644 if (start_pfn >= end_pfn)
5647 /* Account for what is only usable for kernelcore */
5648 if (start_pfn < usable_startpfn) {
5649 unsigned long kernel_pages;
5650 kernel_pages = min(end_pfn, usable_startpfn)
5653 kernelcore_remaining -= min(kernel_pages,
5654 kernelcore_remaining);
5655 required_kernelcore -= min(kernel_pages,
5656 required_kernelcore);
5658 /* Continue if range is now fully accounted */
5659 if (end_pfn <= usable_startpfn) {
5662 * Push zone_movable_pfn to the end so
5663 * that if we have to rebalance
5664 * kernelcore across nodes, we will
5665 * not double account here
5667 zone_movable_pfn[nid] = end_pfn;
5670 start_pfn = usable_startpfn;
5674 * The usable PFN range for ZONE_MOVABLE is from
5675 * start_pfn->end_pfn. Calculate size_pages as the
5676 * number of pages used as kernelcore
5678 size_pages = end_pfn - start_pfn;
5679 if (size_pages > kernelcore_remaining)
5680 size_pages = kernelcore_remaining;
5681 zone_movable_pfn[nid] = start_pfn + size_pages;
5684 * Some kernelcore has been met, update counts and
5685 * break if the kernelcore for this node has been
5688 required_kernelcore -= min(required_kernelcore,
5690 kernelcore_remaining -= size_pages;
5691 if (!kernelcore_remaining)
5697 * If there is still required_kernelcore, we do another pass with one
5698 * less node in the count. This will push zone_movable_pfn[nid] further
5699 * along on the nodes that still have memory until kernelcore is
5703 if (usable_nodes && required_kernelcore > usable_nodes)
5707 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5708 for (nid = 0; nid < MAX_NUMNODES; nid++)
5709 zone_movable_pfn[nid] =
5710 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5713 /* restore the node_state */
5714 node_states[N_MEMORY] = saved_node_state;
5717 /* Any regular or high memory on that node ? */
5718 static void check_for_memory(pg_data_t *pgdat, int nid)
5720 enum zone_type zone_type;
5722 if (N_MEMORY == N_NORMAL_MEMORY)
5725 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5726 struct zone *zone = &pgdat->node_zones[zone_type];
5727 if (populated_zone(zone)) {
5728 node_set_state(nid, N_HIGH_MEMORY);
5729 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5730 zone_type <= ZONE_NORMAL)
5731 node_set_state(nid, N_NORMAL_MEMORY);
5738 * free_area_init_nodes - Initialise all pg_data_t and zone data
5739 * @max_zone_pfn: an array of max PFNs for each zone
5741 * This will call free_area_init_node() for each active node in the system.
5742 * Using the page ranges provided by memblock_set_node(), the size of each
5743 * zone in each node and their holes is calculated. If the maximum PFN
5744 * between two adjacent zones match, it is assumed that the zone is empty.
5745 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5746 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5747 * starts where the previous one ended. For example, ZONE_DMA32 starts
5748 * at arch_max_dma_pfn.
5750 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5752 unsigned long start_pfn, end_pfn;
5755 /* Record where the zone boundaries are */
5756 memset(arch_zone_lowest_possible_pfn, 0,
5757 sizeof(arch_zone_lowest_possible_pfn));
5758 memset(arch_zone_highest_possible_pfn, 0,
5759 sizeof(arch_zone_highest_possible_pfn));
5761 start_pfn = find_min_pfn_with_active_regions();
5763 for (i = 0; i < MAX_NR_ZONES; i++) {
5764 if (i == ZONE_MOVABLE)
5767 end_pfn = max(max_zone_pfn[i], start_pfn);
5768 arch_zone_lowest_possible_pfn[i] = start_pfn;
5769 arch_zone_highest_possible_pfn[i] = end_pfn;
5771 start_pfn = end_pfn;
5773 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5774 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5776 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5777 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5778 find_zone_movable_pfns_for_nodes();
5780 /* Print out the zone ranges */
5781 pr_info("Zone ranges:\n");
5782 for (i = 0; i < MAX_NR_ZONES; i++) {
5783 if (i == ZONE_MOVABLE)
5785 pr_info(" %-8s ", zone_names[i]);
5786 if (arch_zone_lowest_possible_pfn[i] ==
5787 arch_zone_highest_possible_pfn[i])
5790 pr_cont("[mem %#018Lx-%#018Lx]\n",
5791 (u64)arch_zone_lowest_possible_pfn[i]
5793 ((u64)arch_zone_highest_possible_pfn[i]
5794 << PAGE_SHIFT) - 1);
5797 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5798 pr_info("Movable zone start for each node\n");
5799 for (i = 0; i < MAX_NUMNODES; i++) {
5800 if (zone_movable_pfn[i])
5801 pr_info(" Node %d: %#018Lx\n", i,
5802 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5805 /* Print out the early node map */
5806 pr_info("Early memory node ranges\n");
5807 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5808 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5809 (u64)start_pfn << PAGE_SHIFT,
5810 ((u64)end_pfn << PAGE_SHIFT) - 1);
5812 /* Initialise every node */
5813 mminit_verify_pageflags_layout();
5814 setup_nr_node_ids();
5815 for_each_online_node(nid) {
5816 pg_data_t *pgdat = NODE_DATA(nid);
5817 free_area_init_node(nid, NULL,
5818 find_min_pfn_for_node(nid), NULL);
5820 /* Any memory on that node */
5821 if (pgdat->node_present_pages)
5822 node_set_state(nid, N_MEMORY);
5823 check_for_memory(pgdat, nid);
5827 static int __init cmdline_parse_core(char *p, unsigned long *core)
5829 unsigned long long coremem;
5833 coremem = memparse(p, &p);
5834 *core = coremem >> PAGE_SHIFT;
5836 /* Paranoid check that UL is enough for the coremem value */
5837 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5843 * kernelcore=size sets the amount of memory for use for allocations that
5844 * cannot be reclaimed or migrated.
5846 static int __init cmdline_parse_kernelcore(char *p)
5848 return cmdline_parse_core(p, &required_kernelcore);
5852 * movablecore=size sets the amount of memory for use for allocations that
5853 * can be reclaimed or migrated.
5855 static int __init cmdline_parse_movablecore(char *p)
5857 return cmdline_parse_core(p, &required_movablecore);
5860 early_param("kernelcore", cmdline_parse_kernelcore);
5861 early_param("movablecore", cmdline_parse_movablecore);
5863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5865 void adjust_managed_page_count(struct page *page, long count)
5867 spin_lock(&managed_page_count_lock);
5868 page_zone(page)->managed_pages += count;
5869 totalram_pages += count;
5870 #ifdef CONFIG_HIGHMEM
5871 if (PageHighMem(page))
5872 totalhigh_pages += count;
5874 spin_unlock(&managed_page_count_lock);
5876 EXPORT_SYMBOL(adjust_managed_page_count);
5878 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5881 unsigned long pages = 0;
5883 start = (void *)PAGE_ALIGN((unsigned long)start);
5884 end = (void *)((unsigned long)end & PAGE_MASK);
5885 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5886 if ((unsigned int)poison <= 0xFF)
5887 memset(pos, poison, PAGE_SIZE);
5888 free_reserved_page(virt_to_page(pos));
5892 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5893 s, pages << (PAGE_SHIFT - 10), start, end);
5897 EXPORT_SYMBOL(free_reserved_area);
5899 #ifdef CONFIG_HIGHMEM
5900 void free_highmem_page(struct page *page)
5902 __free_reserved_page(page);
5904 page_zone(page)->managed_pages++;
5910 void __init mem_init_print_info(const char *str)
5912 unsigned long physpages, codesize, datasize, rosize, bss_size;
5913 unsigned long init_code_size, init_data_size;
5915 physpages = get_num_physpages();
5916 codesize = _etext - _stext;
5917 datasize = _edata - _sdata;
5918 rosize = __end_rodata - __start_rodata;
5919 bss_size = __bss_stop - __bss_start;
5920 init_data_size = __init_end - __init_begin;
5921 init_code_size = _einittext - _sinittext;
5924 * Detect special cases and adjust section sizes accordingly:
5925 * 1) .init.* may be embedded into .data sections
5926 * 2) .init.text.* may be out of [__init_begin, __init_end],
5927 * please refer to arch/tile/kernel/vmlinux.lds.S.
5928 * 3) .rodata.* may be embedded into .text or .data sections.
5930 #define adj_init_size(start, end, size, pos, adj) \
5932 if (start <= pos && pos < end && size > adj) \
5936 adj_init_size(__init_begin, __init_end, init_data_size,
5937 _sinittext, init_code_size);
5938 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5939 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5940 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5941 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5943 #undef adj_init_size
5945 pr_info("Memory: %luK/%luK available "
5946 "(%luK kernel code, %luK rwdata, %luK rodata, "
5947 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5948 #ifdef CONFIG_HIGHMEM
5952 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5953 codesize >> 10, datasize >> 10, rosize >> 10,
5954 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5955 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5956 totalcma_pages << (PAGE_SHIFT-10),
5957 #ifdef CONFIG_HIGHMEM
5958 totalhigh_pages << (PAGE_SHIFT-10),
5960 str ? ", " : "", str ? str : "");
5964 * set_dma_reserve - set the specified number of pages reserved in the first zone
5965 * @new_dma_reserve: The number of pages to mark reserved
5967 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5968 * In the DMA zone, a significant percentage may be consumed by kernel image
5969 * and other unfreeable allocations which can skew the watermarks badly. This
5970 * function may optionally be used to account for unfreeable pages in the
5971 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5972 * smaller per-cpu batchsize.
5974 void __init set_dma_reserve(unsigned long new_dma_reserve)
5976 dma_reserve = new_dma_reserve;
5979 void __init free_area_init(unsigned long *zones_size)
5981 free_area_init_node(0, zones_size,
5982 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5985 static int page_alloc_cpu_notify(struct notifier_block *self,
5986 unsigned long action, void *hcpu)
5988 int cpu = (unsigned long)hcpu;
5990 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5991 lru_add_drain_cpu(cpu);
5995 * Spill the event counters of the dead processor
5996 * into the current processors event counters.
5997 * This artificially elevates the count of the current
6000 vm_events_fold_cpu(cpu);
6003 * Zero the differential counters of the dead processor
6004 * so that the vm statistics are consistent.
6006 * This is only okay since the processor is dead and cannot
6007 * race with what we are doing.
6009 cpu_vm_stats_fold(cpu);
6014 void __init page_alloc_init(void)
6016 hotcpu_notifier(page_alloc_cpu_notify, 0);
6017 local_irq_lock_init(pa_lock);
6021 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6022 * or min_free_kbytes changes.
6024 static void calculate_totalreserve_pages(void)
6026 struct pglist_data *pgdat;
6027 unsigned long reserve_pages = 0;
6028 enum zone_type i, j;
6030 for_each_online_pgdat(pgdat) {
6031 for (i = 0; i < MAX_NR_ZONES; i++) {
6032 struct zone *zone = pgdat->node_zones + i;
6035 /* Find valid and maximum lowmem_reserve in the zone */
6036 for (j = i; j < MAX_NR_ZONES; j++) {
6037 if (zone->lowmem_reserve[j] > max)
6038 max = zone->lowmem_reserve[j];
6041 /* we treat the high watermark as reserved pages. */
6042 max += high_wmark_pages(zone);
6044 if (max > zone->managed_pages)
6045 max = zone->managed_pages;
6046 reserve_pages += max;
6048 * Lowmem reserves are not available to
6049 * GFP_HIGHUSER page cache allocations and
6050 * kswapd tries to balance zones to their high
6051 * watermark. As a result, neither should be
6052 * regarded as dirtyable memory, to prevent a
6053 * situation where reclaim has to clean pages
6054 * in order to balance the zones.
6056 zone->dirty_balance_reserve = max;
6059 dirty_balance_reserve = reserve_pages;
6060 totalreserve_pages = reserve_pages;
6064 * setup_per_zone_lowmem_reserve - called whenever
6065 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6066 * has a correct pages reserved value, so an adequate number of
6067 * pages are left in the zone after a successful __alloc_pages().
6069 static void setup_per_zone_lowmem_reserve(void)
6071 struct pglist_data *pgdat;
6072 enum zone_type j, idx;
6074 for_each_online_pgdat(pgdat) {
6075 for (j = 0; j < MAX_NR_ZONES; j++) {
6076 struct zone *zone = pgdat->node_zones + j;
6077 unsigned long managed_pages = zone->managed_pages;
6079 zone->lowmem_reserve[j] = 0;
6083 struct zone *lower_zone;
6087 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6088 sysctl_lowmem_reserve_ratio[idx] = 1;
6090 lower_zone = pgdat->node_zones + idx;
6091 lower_zone->lowmem_reserve[j] = managed_pages /
6092 sysctl_lowmem_reserve_ratio[idx];
6093 managed_pages += lower_zone->managed_pages;
6098 /* update totalreserve_pages */
6099 calculate_totalreserve_pages();
6102 static void __setup_per_zone_wmarks(void)
6104 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6105 unsigned long lowmem_pages = 0;
6107 unsigned long flags;
6109 /* Calculate total number of !ZONE_HIGHMEM pages */
6110 for_each_zone(zone) {
6111 if (!is_highmem(zone))
6112 lowmem_pages += zone->managed_pages;
6115 for_each_zone(zone) {
6118 spin_lock_irqsave(&zone->lock, flags);
6119 tmp = (u64)pages_min * zone->managed_pages;
6120 do_div(tmp, lowmem_pages);
6121 if (is_highmem(zone)) {
6123 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6124 * need highmem pages, so cap pages_min to a small
6127 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6128 * deltas control asynch page reclaim, and so should
6129 * not be capped for highmem.
6131 unsigned long min_pages;
6133 min_pages = zone->managed_pages / 1024;
6134 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6135 zone->watermark[WMARK_MIN] = min_pages;
6138 * If it's a lowmem zone, reserve a number of pages
6139 * proportionate to the zone's size.
6141 zone->watermark[WMARK_MIN] = tmp;
6144 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6145 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6147 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6148 high_wmark_pages(zone) - low_wmark_pages(zone) -
6149 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6151 spin_unlock_irqrestore(&zone->lock, flags);
6154 /* update totalreserve_pages */
6155 calculate_totalreserve_pages();
6159 * setup_per_zone_wmarks - called when min_free_kbytes changes
6160 * or when memory is hot-{added|removed}
6162 * Ensures that the watermark[min,low,high] values for each zone are set
6163 * correctly with respect to min_free_kbytes.
6165 void setup_per_zone_wmarks(void)
6167 mutex_lock(&zonelists_mutex);
6168 __setup_per_zone_wmarks();
6169 mutex_unlock(&zonelists_mutex);
6173 * The inactive anon list should be small enough that the VM never has to
6174 * do too much work, but large enough that each inactive page has a chance
6175 * to be referenced again before it is swapped out.
6177 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6178 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6179 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6180 * the anonymous pages are kept on the inactive list.
6183 * memory ratio inactive anon
6184 * -------------------------------------
6193 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6195 unsigned int gb, ratio;
6197 /* Zone size in gigabytes */
6198 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6200 ratio = int_sqrt(10 * gb);
6204 zone->inactive_ratio = ratio;
6207 static void __meminit setup_per_zone_inactive_ratio(void)
6212 calculate_zone_inactive_ratio(zone);
6216 * Initialise min_free_kbytes.
6218 * For small machines we want it small (128k min). For large machines
6219 * we want it large (64MB max). But it is not linear, because network
6220 * bandwidth does not increase linearly with machine size. We use
6222 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6223 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6239 int __meminit init_per_zone_wmark_min(void)
6241 unsigned long lowmem_kbytes;
6242 int new_min_free_kbytes;
6244 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6245 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6247 if (new_min_free_kbytes > user_min_free_kbytes) {
6248 min_free_kbytes = new_min_free_kbytes;
6249 if (min_free_kbytes < 128)
6250 min_free_kbytes = 128;
6251 if (min_free_kbytes > 65536)
6252 min_free_kbytes = 65536;
6254 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6255 new_min_free_kbytes, user_min_free_kbytes);
6257 setup_per_zone_wmarks();
6258 refresh_zone_stat_thresholds();
6259 setup_per_zone_lowmem_reserve();
6260 setup_per_zone_inactive_ratio();
6263 core_initcall(init_per_zone_wmark_min)
6266 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6267 * that we can call two helper functions whenever min_free_kbytes
6270 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6271 void __user *buffer, size_t *length, loff_t *ppos)
6275 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6280 user_min_free_kbytes = min_free_kbytes;
6281 setup_per_zone_wmarks();
6287 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6288 void __user *buffer, size_t *length, loff_t *ppos)
6293 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6298 zone->min_unmapped_pages = (zone->managed_pages *
6299 sysctl_min_unmapped_ratio) / 100;
6303 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6304 void __user *buffer, size_t *length, loff_t *ppos)
6309 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6314 zone->min_slab_pages = (zone->managed_pages *
6315 sysctl_min_slab_ratio) / 100;
6321 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6322 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6323 * whenever sysctl_lowmem_reserve_ratio changes.
6325 * The reserve ratio obviously has absolutely no relation with the
6326 * minimum watermarks. The lowmem reserve ratio can only make sense
6327 * if in function of the boot time zone sizes.
6329 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6330 void __user *buffer, size_t *length, loff_t *ppos)
6332 proc_dointvec_minmax(table, write, buffer, length, ppos);
6333 setup_per_zone_lowmem_reserve();
6338 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6339 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6340 * pagelist can have before it gets flushed back to buddy allocator.
6342 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6343 void __user *buffer, size_t *length, loff_t *ppos)
6346 int old_percpu_pagelist_fraction;
6349 mutex_lock(&pcp_batch_high_lock);
6350 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6352 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6353 if (!write || ret < 0)
6356 /* Sanity checking to avoid pcp imbalance */
6357 if (percpu_pagelist_fraction &&
6358 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6359 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6365 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6368 for_each_populated_zone(zone) {
6371 for_each_possible_cpu(cpu)
6372 pageset_set_high_and_batch(zone,
6373 per_cpu_ptr(zone->pageset, cpu));
6376 mutex_unlock(&pcp_batch_high_lock);
6381 int hashdist = HASHDIST_DEFAULT;
6383 static int __init set_hashdist(char *str)
6387 hashdist = simple_strtoul(str, &str, 0);
6390 __setup("hashdist=", set_hashdist);
6394 * allocate a large system hash table from bootmem
6395 * - it is assumed that the hash table must contain an exact power-of-2
6396 * quantity of entries
6397 * - limit is the number of hash buckets, not the total allocation size
6399 void *__init alloc_large_system_hash(const char *tablename,
6400 unsigned long bucketsize,
6401 unsigned long numentries,
6404 unsigned int *_hash_shift,
6405 unsigned int *_hash_mask,
6406 unsigned long low_limit,
6407 unsigned long high_limit)
6409 unsigned long long max = high_limit;
6410 unsigned long log2qty, size;
6413 /* allow the kernel cmdline to have a say */
6415 /* round applicable memory size up to nearest megabyte */
6416 numentries = nr_kernel_pages;
6418 /* It isn't necessary when PAGE_SIZE >= 1MB */
6419 if (PAGE_SHIFT < 20)
6420 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6422 /* limit to 1 bucket per 2^scale bytes of low memory */
6423 if (scale > PAGE_SHIFT)
6424 numentries >>= (scale - PAGE_SHIFT);
6426 numentries <<= (PAGE_SHIFT - scale);
6428 /* Make sure we've got at least a 0-order allocation.. */
6429 if (unlikely(flags & HASH_SMALL)) {
6430 /* Makes no sense without HASH_EARLY */
6431 WARN_ON(!(flags & HASH_EARLY));
6432 if (!(numentries >> *_hash_shift)) {
6433 numentries = 1UL << *_hash_shift;
6434 BUG_ON(!numentries);
6436 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6437 numentries = PAGE_SIZE / bucketsize;
6439 numentries = roundup_pow_of_two(numentries);
6441 /* limit allocation size to 1/16 total memory by default */
6443 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6444 do_div(max, bucketsize);
6446 max = min(max, 0x80000000ULL);
6448 if (numentries < low_limit)
6449 numentries = low_limit;
6450 if (numentries > max)
6453 log2qty = ilog2(numentries);
6456 size = bucketsize << log2qty;
6457 if (flags & HASH_EARLY)
6458 table = memblock_virt_alloc_nopanic(size, 0);
6460 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6463 * If bucketsize is not a power-of-two, we may free
6464 * some pages at the end of hash table which
6465 * alloc_pages_exact() automatically does
6467 if (get_order(size) < MAX_ORDER) {
6468 table = alloc_pages_exact(size, GFP_ATOMIC);
6469 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6472 } while (!table && size > PAGE_SIZE && --log2qty);
6475 panic("Failed to allocate %s hash table\n", tablename);
6477 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6480 ilog2(size) - PAGE_SHIFT,
6484 *_hash_shift = log2qty;
6486 *_hash_mask = (1 << log2qty) - 1;
6491 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6492 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6495 #ifdef CONFIG_SPARSEMEM
6496 return __pfn_to_section(pfn)->pageblock_flags;
6498 return zone->pageblock_flags;
6499 #endif /* CONFIG_SPARSEMEM */
6502 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6504 #ifdef CONFIG_SPARSEMEM
6505 pfn &= (PAGES_PER_SECTION-1);
6506 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6508 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6509 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6510 #endif /* CONFIG_SPARSEMEM */
6514 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6515 * @page: The page within the block of interest
6516 * @pfn: The target page frame number
6517 * @end_bitidx: The last bit of interest to retrieve
6518 * @mask: mask of bits that the caller is interested in
6520 * Return: pageblock_bits flags
6522 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6523 unsigned long end_bitidx,
6527 unsigned long *bitmap;
6528 unsigned long bitidx, word_bitidx;
6531 zone = page_zone(page);
6532 bitmap = get_pageblock_bitmap(zone, pfn);
6533 bitidx = pfn_to_bitidx(zone, pfn);
6534 word_bitidx = bitidx / BITS_PER_LONG;
6535 bitidx &= (BITS_PER_LONG-1);
6537 word = bitmap[word_bitidx];
6538 bitidx += end_bitidx;
6539 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6543 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6544 * @page: The page within the block of interest
6545 * @flags: The flags to set
6546 * @pfn: The target page frame number
6547 * @end_bitidx: The last bit of interest
6548 * @mask: mask of bits that the caller is interested in
6550 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6552 unsigned long end_bitidx,
6556 unsigned long *bitmap;
6557 unsigned long bitidx, word_bitidx;
6558 unsigned long old_word, word;
6560 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6562 zone = page_zone(page);
6563 bitmap = get_pageblock_bitmap(zone, pfn);
6564 bitidx = pfn_to_bitidx(zone, pfn);
6565 word_bitidx = bitidx / BITS_PER_LONG;
6566 bitidx &= (BITS_PER_LONG-1);
6568 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6570 bitidx += end_bitidx;
6571 mask <<= (BITS_PER_LONG - bitidx - 1);
6572 flags <<= (BITS_PER_LONG - bitidx - 1);
6574 word = READ_ONCE(bitmap[word_bitidx]);
6576 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6577 if (word == old_word)
6584 * This function checks whether pageblock includes unmovable pages or not.
6585 * If @count is not zero, it is okay to include less @count unmovable pages
6587 * PageLRU check without isolation or lru_lock could race so that
6588 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6589 * expect this function should be exact.
6591 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6592 bool skip_hwpoisoned_pages)
6594 unsigned long pfn, iter, found;
6598 * For avoiding noise data, lru_add_drain_all() should be called
6599 * If ZONE_MOVABLE, the zone never contains unmovable pages
6601 if (zone_idx(zone) == ZONE_MOVABLE)
6603 mt = get_pageblock_migratetype(page);
6604 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6607 pfn = page_to_pfn(page);
6608 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6609 unsigned long check = pfn + iter;
6611 if (!pfn_valid_within(check))
6614 page = pfn_to_page(check);
6617 * Hugepages are not in LRU lists, but they're movable.
6618 * We need not scan over tail pages bacause we don't
6619 * handle each tail page individually in migration.
6621 if (PageHuge(page)) {
6622 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6627 * We can't use page_count without pin a page
6628 * because another CPU can free compound page.
6629 * This check already skips compound tails of THP
6630 * because their page->_count is zero at all time.
6632 if (!atomic_read(&page->_count)) {
6633 if (PageBuddy(page))
6634 iter += (1 << page_order(page)) - 1;
6639 * The HWPoisoned page may be not in buddy system, and
6640 * page_count() is not 0.
6642 if (skip_hwpoisoned_pages && PageHWPoison(page))
6648 * If there are RECLAIMABLE pages, we need to check
6649 * it. But now, memory offline itself doesn't call
6650 * shrink_node_slabs() and it still to be fixed.
6653 * If the page is not RAM, page_count()should be 0.
6654 * we don't need more check. This is an _used_ not-movable page.
6656 * The problematic thing here is PG_reserved pages. PG_reserved
6657 * is set to both of a memory hole page and a _used_ kernel
6666 bool is_pageblock_removable_nolock(struct page *page)
6672 * We have to be careful here because we are iterating over memory
6673 * sections which are not zone aware so we might end up outside of
6674 * the zone but still within the section.
6675 * We have to take care about the node as well. If the node is offline
6676 * its NODE_DATA will be NULL - see page_zone.
6678 if (!node_online(page_to_nid(page)))
6681 zone = page_zone(page);
6682 pfn = page_to_pfn(page);
6683 if (!zone_spans_pfn(zone, pfn))
6686 return !has_unmovable_pages(zone, page, 0, true);
6691 static unsigned long pfn_max_align_down(unsigned long pfn)
6693 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6694 pageblock_nr_pages) - 1);
6697 static unsigned long pfn_max_align_up(unsigned long pfn)
6699 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6700 pageblock_nr_pages));
6703 /* [start, end) must belong to a single zone. */
6704 static int __alloc_contig_migrate_range(struct compact_control *cc,
6705 unsigned long start, unsigned long end)
6707 /* This function is based on compact_zone() from compaction.c. */
6708 unsigned long nr_reclaimed;
6709 unsigned long pfn = start;
6710 unsigned int tries = 0;
6715 while (pfn < end || !list_empty(&cc->migratepages)) {
6716 if (fatal_signal_pending(current)) {
6721 if (list_empty(&cc->migratepages)) {
6722 cc->nr_migratepages = 0;
6723 pfn = isolate_migratepages_range(cc, pfn, end);
6729 } else if (++tries == 5) {
6730 ret = ret < 0 ? ret : -EBUSY;
6734 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6736 cc->nr_migratepages -= nr_reclaimed;
6738 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6739 NULL, 0, cc->mode, MR_CMA);
6742 putback_movable_pages(&cc->migratepages);
6749 * alloc_contig_range() -- tries to allocate given range of pages
6750 * @start: start PFN to allocate
6751 * @end: one-past-the-last PFN to allocate
6752 * @migratetype: migratetype of the underlaying pageblocks (either
6753 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6754 * in range must have the same migratetype and it must
6755 * be either of the two.
6757 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6758 * aligned, however it's the caller's responsibility to guarantee that
6759 * we are the only thread that changes migrate type of pageblocks the
6762 * The PFN range must belong to a single zone.
6764 * Returns zero on success or negative error code. On success all
6765 * pages which PFN is in [start, end) are allocated for the caller and
6766 * need to be freed with free_contig_range().
6768 int alloc_contig_range(unsigned long start, unsigned long end,
6769 unsigned migratetype)
6771 unsigned long outer_start, outer_end;
6775 struct compact_control cc = {
6776 .nr_migratepages = 0,
6778 .zone = page_zone(pfn_to_page(start)),
6779 .mode = MIGRATE_SYNC,
6780 .ignore_skip_hint = true,
6782 INIT_LIST_HEAD(&cc.migratepages);
6785 * What we do here is we mark all pageblocks in range as
6786 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6787 * have different sizes, and due to the way page allocator
6788 * work, we align the range to biggest of the two pages so
6789 * that page allocator won't try to merge buddies from
6790 * different pageblocks and change MIGRATE_ISOLATE to some
6791 * other migration type.
6793 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6794 * migrate the pages from an unaligned range (ie. pages that
6795 * we are interested in). This will put all the pages in
6796 * range back to page allocator as MIGRATE_ISOLATE.
6798 * When this is done, we take the pages in range from page
6799 * allocator removing them from the buddy system. This way
6800 * page allocator will never consider using them.
6802 * This lets us mark the pageblocks back as
6803 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6804 * aligned range but not in the unaligned, original range are
6805 * put back to page allocator so that buddy can use them.
6808 ret = start_isolate_page_range(pfn_max_align_down(start),
6809 pfn_max_align_up(end), migratetype,
6814 ret = __alloc_contig_migrate_range(&cc, start, end);
6819 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6820 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6821 * more, all pages in [start, end) are free in page allocator.
6822 * What we are going to do is to allocate all pages from
6823 * [start, end) (that is remove them from page allocator).
6825 * The only problem is that pages at the beginning and at the
6826 * end of interesting range may be not aligned with pages that
6827 * page allocator holds, ie. they can be part of higher order
6828 * pages. Because of this, we reserve the bigger range and
6829 * once this is done free the pages we are not interested in.
6831 * We don't have to hold zone->lock here because the pages are
6832 * isolated thus they won't get removed from buddy.
6835 lru_add_drain_all();
6836 drain_all_pages(cc.zone);
6839 outer_start = start;
6840 while (!PageBuddy(pfn_to_page(outer_start))) {
6841 if (++order >= MAX_ORDER) {
6845 outer_start &= ~0UL << order;
6848 /* Make sure the range is really isolated. */
6849 if (test_pages_isolated(outer_start, end, false)) {
6850 pr_info("%s: [%lx, %lx) PFNs busy\n",
6851 __func__, outer_start, end);
6856 /* Grab isolated pages from freelists. */
6857 outer_end = isolate_freepages_range(&cc, outer_start, end);
6863 /* Free head and tail (if any) */
6864 if (start != outer_start)
6865 free_contig_range(outer_start, start - outer_start);
6866 if (end != outer_end)
6867 free_contig_range(end, outer_end - end);
6870 undo_isolate_page_range(pfn_max_align_down(start),
6871 pfn_max_align_up(end), migratetype);
6875 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6877 unsigned int count = 0;
6879 for (; nr_pages--; pfn++) {
6880 struct page *page = pfn_to_page(pfn);
6882 count += page_count(page) != 1;
6885 WARN(count != 0, "%d pages are still in use!\n", count);
6889 #ifdef CONFIG_MEMORY_HOTPLUG
6891 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6892 * page high values need to be recalulated.
6894 void __meminit zone_pcp_update(struct zone *zone)
6897 mutex_lock(&pcp_batch_high_lock);
6898 for_each_possible_cpu(cpu)
6899 pageset_set_high_and_batch(zone,
6900 per_cpu_ptr(zone->pageset, cpu));
6901 mutex_unlock(&pcp_batch_high_lock);
6905 void zone_pcp_reset(struct zone *zone)
6907 unsigned long flags;
6909 struct per_cpu_pageset *pset;
6911 /* avoid races with drain_pages() */
6912 local_lock_irqsave(pa_lock, flags);
6913 if (zone->pageset != &boot_pageset) {
6914 for_each_online_cpu(cpu) {
6915 pset = per_cpu_ptr(zone->pageset, cpu);
6916 drain_zonestat(zone, pset);
6918 free_percpu(zone->pageset);
6919 zone->pageset = &boot_pageset;
6921 local_unlock_irqrestore(pa_lock, flags);
6924 #ifdef CONFIG_MEMORY_HOTREMOVE
6926 * All pages in the range must be isolated before calling this.
6929 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6933 unsigned int order, i;
6935 unsigned long flags;
6936 /* find the first valid pfn */
6937 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6942 zone = page_zone(pfn_to_page(pfn));
6943 spin_lock_irqsave(&zone->lock, flags);
6945 while (pfn < end_pfn) {
6946 if (!pfn_valid(pfn)) {
6950 page = pfn_to_page(pfn);
6952 * The HWPoisoned page may be not in buddy system, and
6953 * page_count() is not 0.
6955 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6957 SetPageReserved(page);
6961 BUG_ON(page_count(page));
6962 BUG_ON(!PageBuddy(page));
6963 order = page_order(page);
6964 #ifdef CONFIG_DEBUG_VM
6965 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6966 pfn, 1 << order, end_pfn);
6968 list_del(&page->lru);
6969 rmv_page_order(page);
6970 zone->free_area[order].nr_free--;
6971 for (i = 0; i < (1 << order); i++)
6972 SetPageReserved((page+i));
6973 pfn += (1 << order);
6975 spin_unlock_irqrestore(&zone->lock, flags);
6979 #ifdef CONFIG_MEMORY_FAILURE
6980 bool is_free_buddy_page(struct page *page)
6982 struct zone *zone = page_zone(page);
6983 unsigned long pfn = page_to_pfn(page);
6984 unsigned long flags;
6987 spin_lock_irqsave(&zone->lock, flags);
6988 for (order = 0; order < MAX_ORDER; order++) {
6989 struct page *page_head = page - (pfn & ((1 << order) - 1));
6991 if (PageBuddy(page_head) && page_order(page_head) >= order)
6994 spin_unlock_irqrestore(&zone->lock, flags);
6996 return order < MAX_ORDER;