2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
53 #define CREATE_TRACE_POINTS
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
61 #define MODULE_PARAM_PREFIX "rcupdate."
63 module_param(rcu_expedited, int, 0);
65 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
67 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
69 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
70 * RCU-sched read-side critical section. In absence of
71 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
72 * critical section unless it can prove otherwise. Note that disabling
73 * of preemption (including disabling irqs) counts as an RCU-sched
74 * read-side critical section. This is useful for debug checks in functions
75 * that required that they be called within an RCU-sched read-side
78 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
79 * and while lockdep is disabled.
81 * Note that if the CPU is in the idle loop from an RCU point of
82 * view (ie: that we are in the section between rcu_idle_enter() and
83 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
84 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
85 * that are in such a section, considering these as in extended quiescent
86 * state, so such a CPU is effectively never in an RCU read-side critical
87 * section regardless of what RCU primitives it invokes. This state of
88 * affairs is required --- we need to keep an RCU-free window in idle
89 * where the CPU may possibly enter into low power mode. This way we can
90 * notice an extended quiescent state to other CPUs that started a grace
91 * period. Otherwise we would delay any grace period as long as we run in
94 * Similarly, we avoid claiming an SRCU read lock held if the current
97 int rcu_read_lock_sched_held(void)
99 int lockdep_opinion = 0;
101 if (!debug_lockdep_rcu_enabled())
103 if (!rcu_is_watching())
105 if (!rcu_lockdep_current_cpu_online())
108 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
109 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
111 EXPORT_SYMBOL(rcu_read_lock_sched_held);
114 #ifndef CONFIG_TINY_RCU
116 static atomic_t rcu_expedited_nesting =
117 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
120 * Should normal grace-period primitives be expedited? Intended for
121 * use within RCU. Note that this function takes the rcu_expedited
122 * sysfs/boot variable into account as well as the rcu_expedite_gp()
123 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
124 * returns false is a -really- bad idea.
126 bool rcu_gp_is_expedited(void)
128 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
130 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
133 * rcu_expedite_gp - Expedite future RCU grace periods
135 * After a call to this function, future calls to synchronize_rcu() and
136 * friends act as the corresponding synchronize_rcu_expedited() function
137 * had instead been called.
139 void rcu_expedite_gp(void)
141 atomic_inc(&rcu_expedited_nesting);
143 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
146 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
148 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
149 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
150 * and if the rcu_expedited sysfs/boot parameter is not set, then all
151 * subsequent calls to synchronize_rcu() and friends will return to
152 * their normal non-expedited behavior.
154 void rcu_unexpedite_gp(void)
156 atomic_dec(&rcu_expedited_nesting);
158 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
160 #endif /* #ifndef CONFIG_TINY_RCU */
163 * Inform RCU of the end of the in-kernel boot sequence.
165 void rcu_end_inkernel_boot(void)
167 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
171 #ifdef CONFIG_PREEMPT_RCU
174 * Preemptible RCU implementation for rcu_read_lock().
175 * Just increment ->rcu_read_lock_nesting, shared state will be updated
178 void __rcu_read_lock(void)
180 current->rcu_read_lock_nesting++;
181 barrier(); /* critical section after entry code. */
183 EXPORT_SYMBOL_GPL(__rcu_read_lock);
186 * Preemptible RCU implementation for rcu_read_unlock().
187 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
188 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
189 * invoke rcu_read_unlock_special() to clean up after a context switch
190 * in an RCU read-side critical section and other special cases.
192 void __rcu_read_unlock(void)
194 struct task_struct *t = current;
196 if (t->rcu_read_lock_nesting != 1) {
197 --t->rcu_read_lock_nesting;
199 barrier(); /* critical section before exit code. */
200 t->rcu_read_lock_nesting = INT_MIN;
201 barrier(); /* assign before ->rcu_read_unlock_special load */
202 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
203 rcu_read_unlock_special(t);
204 barrier(); /* ->rcu_read_unlock_special load before assign */
205 t->rcu_read_lock_nesting = 0;
207 #ifdef CONFIG_PROVE_LOCKING
209 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
211 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
213 #endif /* #ifdef CONFIG_PROVE_LOCKING */
215 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
217 #endif /* #ifdef CONFIG_PREEMPT_RCU */
219 #ifdef CONFIG_DEBUG_LOCK_ALLOC
220 static struct lock_class_key rcu_lock_key;
221 struct lockdep_map rcu_lock_map =
222 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
223 EXPORT_SYMBOL_GPL(rcu_lock_map);
225 static struct lock_class_key rcu_bh_lock_key;
226 struct lockdep_map rcu_bh_lock_map =
227 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
228 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
230 static struct lock_class_key rcu_sched_lock_key;
231 struct lockdep_map rcu_sched_lock_map =
232 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
233 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
235 static struct lock_class_key rcu_callback_key;
236 struct lockdep_map rcu_callback_map =
237 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
238 EXPORT_SYMBOL_GPL(rcu_callback_map);
240 int notrace debug_lockdep_rcu_enabled(void)
242 return rcu_scheduler_active && debug_locks &&
243 current->lockdep_recursion == 0;
245 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
248 * rcu_read_lock_held() - might we be in RCU read-side critical section?
250 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
251 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
252 * this assumes we are in an RCU read-side critical section unless it can
253 * prove otherwise. This is useful for debug checks in functions that
254 * require that they be called within an RCU read-side critical section.
256 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
257 * and while lockdep is disabled.
259 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
260 * occur in the same context, for example, it is illegal to invoke
261 * rcu_read_unlock() in process context if the matching rcu_read_lock()
262 * was invoked from within an irq handler.
264 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
265 * offline from an RCU perspective, so check for those as well.
267 int rcu_read_lock_held(void)
269 if (!debug_lockdep_rcu_enabled())
271 if (!rcu_is_watching())
273 if (!rcu_lockdep_current_cpu_online())
275 return lock_is_held(&rcu_lock_map);
277 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
279 #ifndef CONFIG_PREEMPT_RT_FULL
281 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
283 * Check for bottom half being disabled, which covers both the
284 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
285 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
286 * will show the situation. This is useful for debug checks in functions
287 * that require that they be called within an RCU read-side critical
290 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
292 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
293 * offline from an RCU perspective, so check for those as well.
295 int rcu_read_lock_bh_held(void)
297 if (!debug_lockdep_rcu_enabled())
299 if (!rcu_is_watching())
301 if (!rcu_lockdep_current_cpu_online())
303 return in_softirq() || irqs_disabled();
305 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
308 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
311 * wakeme_after_rcu() - Callback function to awaken a task after grace period
312 * @head: Pointer to rcu_head member within rcu_synchronize structure
314 * Awaken the corresponding task now that a grace period has elapsed.
316 void wakeme_after_rcu(struct rcu_head *head)
318 struct rcu_synchronize *rcu;
320 rcu = container_of(head, struct rcu_synchronize, head);
321 complete(&rcu->completion);
323 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
325 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
326 struct rcu_synchronize *rs_array)
330 /* Initialize and register callbacks for each flavor specified. */
331 for (i = 0; i < n; i++) {
333 (crcu_array[i] == call_rcu ||
334 crcu_array[i] == call_rcu_bh)) {
338 init_rcu_head_on_stack(&rs_array[i].head);
339 init_completion(&rs_array[i].completion);
340 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
343 /* Wait for all callbacks to be invoked. */
344 for (i = 0; i < n; i++) {
346 (crcu_array[i] == call_rcu ||
347 crcu_array[i] == call_rcu_bh))
349 wait_for_completion(&rs_array[i].completion);
350 destroy_rcu_head_on_stack(&rs_array[i].head);
353 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
355 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
356 void init_rcu_head(struct rcu_head *head)
358 debug_object_init(head, &rcuhead_debug_descr);
361 void destroy_rcu_head(struct rcu_head *head)
363 debug_object_free(head, &rcuhead_debug_descr);
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown object is activated (might be a statically initialized object)
370 * Activation is performed internally by call_rcu().
372 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
374 struct rcu_head *head = addr;
378 case ODEBUG_STATE_NOTAVAILABLE:
380 * This is not really a fixup. We just make sure that it is
381 * tracked in the object tracker.
383 debug_object_init(head, &rcuhead_debug_descr);
384 debug_object_activate(head, &rcuhead_debug_descr);
392 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
393 * @head: pointer to rcu_head structure to be initialized
395 * This function informs debugobjects of a new rcu_head structure that
396 * has been allocated as an auto variable on the stack. This function
397 * is not required for rcu_head structures that are statically defined or
398 * that are dynamically allocated on the heap. This function has no
399 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
401 void init_rcu_head_on_stack(struct rcu_head *head)
403 debug_object_init_on_stack(head, &rcuhead_debug_descr);
405 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
408 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
409 * @head: pointer to rcu_head structure to be initialized
411 * This function informs debugobjects that an on-stack rcu_head structure
412 * is about to go out of scope. As with init_rcu_head_on_stack(), this
413 * function is not required for rcu_head structures that are statically
414 * defined or that are dynamically allocated on the heap. Also as with
415 * init_rcu_head_on_stack(), this function has no effect for
416 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
418 void destroy_rcu_head_on_stack(struct rcu_head *head)
420 debug_object_free(head, &rcuhead_debug_descr);
422 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
424 struct debug_obj_descr rcuhead_debug_descr = {
426 .fixup_activate = rcuhead_fixup_activate,
428 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
429 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
431 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
432 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
434 unsigned long c_old, unsigned long c)
436 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
438 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
440 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
444 #ifdef CONFIG_RCU_STALL_COMMON
446 #ifdef CONFIG_PROVE_RCU
447 #define RCU_STALL_DELAY_DELTA (5 * HZ)
449 #define RCU_STALL_DELAY_DELTA 0
452 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
453 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
455 module_param(rcu_cpu_stall_suppress, int, 0644);
456 module_param(rcu_cpu_stall_timeout, int, 0644);
458 int rcu_jiffies_till_stall_check(void)
460 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
463 * Limit check must be consistent with the Kconfig limits
464 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
466 if (till_stall_check < 3) {
467 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
468 till_stall_check = 3;
469 } else if (till_stall_check > 300) {
470 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
471 till_stall_check = 300;
473 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
476 void rcu_sysrq_start(void)
478 if (!rcu_cpu_stall_suppress)
479 rcu_cpu_stall_suppress = 2;
482 void rcu_sysrq_end(void)
484 if (rcu_cpu_stall_suppress == 2)
485 rcu_cpu_stall_suppress = 0;
488 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
490 rcu_cpu_stall_suppress = 1;
494 static struct notifier_block rcu_panic_block = {
495 .notifier_call = rcu_panic,
498 static int __init check_cpu_stall_init(void)
500 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
503 early_initcall(check_cpu_stall_init);
505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
507 #ifdef CONFIG_TASKS_RCU
510 * Simple variant of RCU whose quiescent states are voluntary context switch,
511 * user-space execution, and idle. As such, grace periods can take one good
512 * long time. There are no read-side primitives similar to rcu_read_lock()
513 * and rcu_read_unlock() because this implementation is intended to get
514 * the system into a safe state for some of the manipulations involved in
515 * tracing and the like. Finally, this implementation does not support
516 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
517 * per-CPU callback lists will be needed.
520 /* Global list of callbacks and associated lock. */
521 static struct rcu_head *rcu_tasks_cbs_head;
522 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
523 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
524 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
526 /* Track exiting tasks in order to allow them to be waited for. */
527 DEFINE_SRCU(tasks_rcu_exit_srcu);
529 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
530 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
531 module_param(rcu_task_stall_timeout, int, 0644);
533 static void rcu_spawn_tasks_kthread(void);
536 * Post an RCU-tasks callback. First call must be from process context
537 * after the scheduler if fully operational.
539 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
546 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
547 needwake = !rcu_tasks_cbs_head;
548 *rcu_tasks_cbs_tail = rhp;
549 rcu_tasks_cbs_tail = &rhp->next;
550 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
552 rcu_spawn_tasks_kthread();
553 wake_up(&rcu_tasks_cbs_wq);
556 EXPORT_SYMBOL_GPL(call_rcu_tasks);
559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
561 * Control will return to the caller some time after a full rcu-tasks
562 * grace period has elapsed, in other words after all currently
563 * executing rcu-tasks read-side critical sections have elapsed. These
564 * read-side critical sections are delimited by calls to schedule(),
565 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
568 * This is a very specialized primitive, intended only for a few uses in
569 * tracing and other situations requiring manipulation of function
570 * preambles and profiling hooks. The synchronize_rcu_tasks() function
571 * is not (yet) intended for heavy use from multiple CPUs.
573 * Note that this guarantee implies further memory-ordering guarantees.
574 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575 * each CPU is guaranteed to have executed a full memory barrier since the
576 * end of its last RCU-tasks read-side critical section whose beginning
577 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
578 * having an RCU-tasks read-side critical section that extends beyond
579 * the return from synchronize_rcu_tasks() is guaranteed to have executed
580 * a full memory barrier after the beginning of synchronize_rcu_tasks()
581 * and before the beginning of that RCU-tasks read-side critical section.
582 * Note that these guarantees include CPUs that are offline, idle, or
583 * executing in user mode, as well as CPUs that are executing in the kernel.
585 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587 * to have executed a full memory barrier during the execution of
588 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589 * (but again only if the system has more than one CPU).
591 void synchronize_rcu_tasks(void)
593 /* Complain if the scheduler has not started. */
594 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
595 "synchronize_rcu_tasks called too soon");
597 /* Wait for the grace period. */
598 wait_rcu_gp(call_rcu_tasks);
600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
603 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
605 * Although the current implementation is guaranteed to wait, it is not
606 * obligated to, for example, if there are no pending callbacks.
608 void rcu_barrier_tasks(void)
610 /* There is only one callback queue, so this is easy. ;-) */
611 synchronize_rcu_tasks();
613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
615 /* See if tasks are still holding out, complain if so. */
616 static void check_holdout_task(struct task_struct *t,
617 bool needreport, bool *firstreport)
621 if (!READ_ONCE(t->rcu_tasks_holdout) ||
622 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
623 !READ_ONCE(t->on_rq) ||
624 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
625 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
626 WRITE_ONCE(t->rcu_tasks_holdout, false);
627 list_del_init(&t->rcu_tasks_holdout_list);
634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 *firstreport = false;
638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 t, ".I"[is_idle_task(t)],
640 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
641 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
642 t->rcu_tasks_idle_cpu, cpu);
646 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647 static int __noreturn rcu_tasks_kthread(void *arg)
650 struct task_struct *g, *t;
651 unsigned long lastreport;
652 struct rcu_head *list;
653 struct rcu_head *next;
654 LIST_HEAD(rcu_tasks_holdouts);
656 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
657 housekeeping_affine(current);
660 * Each pass through the following loop makes one check for
661 * newly arrived callbacks, and, if there are some, waits for
662 * one RCU-tasks grace period and then invokes the callbacks.
663 * This loop is terminated by the system going down. ;-)
667 /* Pick up any new callbacks. */
668 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
669 list = rcu_tasks_cbs_head;
670 rcu_tasks_cbs_head = NULL;
671 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
672 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
674 /* If there were none, wait a bit and start over. */
676 wait_event_interruptible(rcu_tasks_cbs_wq,
678 if (!rcu_tasks_cbs_head) {
679 WARN_ON(signal_pending(current));
680 schedule_timeout_interruptible(HZ/10);
686 * Wait for all pre-existing t->on_rq and t->nvcsw
687 * transitions to complete. Invoking synchronize_sched()
688 * suffices because all these transitions occur with
689 * interrupts disabled. Without this synchronize_sched(),
690 * a read-side critical section that started before the
691 * grace period might be incorrectly seen as having started
692 * after the grace period.
694 * This synchronize_sched() also dispenses with the
695 * need for a memory barrier on the first store to
696 * ->rcu_tasks_holdout, as it forces the store to happen
697 * after the beginning of the grace period.
702 * There were callbacks, so we need to wait for an
703 * RCU-tasks grace period. Start off by scanning
704 * the task list for tasks that are not already
705 * voluntarily blocked. Mark these tasks and make
706 * a list of them in rcu_tasks_holdouts.
709 for_each_process_thread(g, t) {
710 if (t != current && READ_ONCE(t->on_rq) &&
713 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
714 WRITE_ONCE(t->rcu_tasks_holdout, true);
715 list_add(&t->rcu_tasks_holdout_list,
716 &rcu_tasks_holdouts);
722 * Wait for tasks that are in the process of exiting.
723 * This does only part of the job, ensuring that all
724 * tasks that were previously exiting reach the point
725 * where they have disabled preemption, allowing the
726 * later synchronize_sched() to finish the job.
728 synchronize_srcu(&tasks_rcu_exit_srcu);
731 * Each pass through the following loop scans the list
732 * of holdout tasks, removing any that are no longer
733 * holdouts. When the list is empty, we are done.
735 lastreport = jiffies;
736 while (!list_empty(&rcu_tasks_holdouts)) {
740 struct task_struct *t1;
742 schedule_timeout_interruptible(HZ);
743 rtst = READ_ONCE(rcu_task_stall_timeout);
744 needreport = rtst > 0 &&
745 time_after(jiffies, lastreport + rtst);
747 lastreport = jiffies;
749 WARN_ON(signal_pending(current));
750 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
751 rcu_tasks_holdout_list) {
752 check_holdout_task(t, needreport, &firstreport);
758 * Because ->on_rq and ->nvcsw are not guaranteed
759 * to have a full memory barriers prior to them in the
760 * schedule() path, memory reordering on other CPUs could
761 * cause their RCU-tasks read-side critical sections to
762 * extend past the end of the grace period. However,
763 * because these ->nvcsw updates are carried out with
764 * interrupts disabled, we can use synchronize_sched()
765 * to force the needed ordering on all such CPUs.
767 * This synchronize_sched() also confines all
768 * ->rcu_tasks_holdout accesses to be within the grace
769 * period, avoiding the need for memory barriers for
770 * ->rcu_tasks_holdout accesses.
772 * In addition, this synchronize_sched() waits for exiting
773 * tasks to complete their final preempt_disable() region
774 * of execution, cleaning up after the synchronize_srcu()
779 /* Invoke the callbacks. */
788 schedule_timeout_uninterruptible(HZ/10);
792 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
793 static void rcu_spawn_tasks_kthread(void)
795 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
796 static struct task_struct *rcu_tasks_kthread_ptr;
797 struct task_struct *t;
799 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
800 smp_mb(); /* Ensure caller sees full kthread. */
803 mutex_lock(&rcu_tasks_kthread_mutex);
804 if (rcu_tasks_kthread_ptr) {
805 mutex_unlock(&rcu_tasks_kthread_mutex);
808 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
810 smp_mb(); /* Ensure others see full kthread. */
811 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
812 mutex_unlock(&rcu_tasks_kthread_mutex);
815 #endif /* #ifdef CONFIG_TASKS_RCU */
817 #ifdef CONFIG_PROVE_RCU
820 * Early boot self test parameters, one for each flavor
822 static bool rcu_self_test;
823 static bool rcu_self_test_bh;
824 static bool rcu_self_test_sched;
826 module_param(rcu_self_test, bool, 0444);
827 module_param(rcu_self_test_bh, bool, 0444);
828 module_param(rcu_self_test_sched, bool, 0444);
830 static int rcu_self_test_counter;
832 static void test_callback(struct rcu_head *r)
834 rcu_self_test_counter++;
835 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
838 static void early_boot_test_call_rcu(void)
840 static struct rcu_head head;
842 call_rcu(&head, test_callback);
845 static void early_boot_test_call_rcu_bh(void)
847 static struct rcu_head head;
849 call_rcu_bh(&head, test_callback);
852 static void early_boot_test_call_rcu_sched(void)
854 static struct rcu_head head;
856 call_rcu_sched(&head, test_callback);
859 void rcu_early_boot_tests(void)
861 pr_info("Running RCU self tests\n");
864 early_boot_test_call_rcu();
865 if (rcu_self_test_bh)
866 early_boot_test_call_rcu_bh();
867 if (rcu_self_test_sched)
868 early_boot_test_call_rcu_sched();
871 static int rcu_verify_early_boot_tests(void)
874 int early_boot_test_counter = 0;
877 early_boot_test_counter++;
880 if (rcu_self_test_bh) {
881 early_boot_test_counter++;
884 if (rcu_self_test_sched) {
885 early_boot_test_counter++;
889 if (rcu_self_test_counter != early_boot_test_counter) {
896 late_initcall(rcu_verify_early_boot_tests);
898 void rcu_early_boot_tests(void) {}
899 #endif /* CONFIG_PROVE_RCU */