These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .blk_addr = index,
60                 .encrypted_page = NULL,
61         };
62
63         if (unlikely(!is_meta))
64                 fio.rw &= ~REQ_META;
65 repeat:
66         page = grab_cache_page(mapping, index);
67         if (!page) {
68                 cond_resched();
69                 goto repeat;
70         }
71         if (PageUptodate(page))
72                 goto out;
73
74         fio.page = page;
75
76         if (f2fs_submit_page_bio(&fio)) {
77                 f2fs_put_page(page, 1);
78                 goto repeat;
79         }
80
81         lock_page(page);
82         if (unlikely(page->mapping != mapping)) {
83                 f2fs_put_page(page, 1);
84                 goto repeat;
85         }
86
87         /*
88          * if there is any IO error when accessing device, make our filesystem
89          * readonly and make sure do not write checkpoint with non-uptodate
90          * meta page.
91          */
92         if (unlikely(!PageUptodate(page)))
93                 f2fs_stop_checkpoint(sbi);
94 out:
95         return page;
96 }
97
98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
99 {
100         return __get_meta_page(sbi, index, true);
101 }
102
103 /* for POR only */
104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
105 {
106         return __get_meta_page(sbi, index, false);
107 }
108
109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
110 {
111         switch (type) {
112         case META_NAT:
113                 break;
114         case META_SIT:
115                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
116                         return false;
117                 break;
118         case META_SSA:
119                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
120                         blkaddr < SM_I(sbi)->ssa_blkaddr))
121                         return false;
122                 break;
123         case META_CP:
124                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
125                         blkaddr < __start_cp_addr(sbi)))
126                         return false;
127                 break;
128         case META_POR:
129                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
130                         blkaddr < MAIN_BLKADDR(sbi)))
131                         return false;
132                 break;
133         default:
134                 BUG();
135         }
136
137         return true;
138 }
139
140 /*
141  * Readahead CP/NAT/SIT/SSA pages
142  */
143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
144                                                         int type, bool sync)
145 {
146         block_t prev_blk_addr = 0;
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155
156         if (unlikely(type == META_POR))
157                 fio.rw &= ~REQ_META;
158
159         for (; nrpages-- > 0; blkno++) {
160
161                 if (!is_valid_blkaddr(sbi, blkno, type))
162                         goto out;
163
164                 switch (type) {
165                 case META_NAT:
166                         if (unlikely(blkno >=
167                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
168                                 blkno = 0;
169                         /* get nat block addr */
170                         fio.blk_addr = current_nat_addr(sbi,
171                                         blkno * NAT_ENTRY_PER_BLOCK);
172                         break;
173                 case META_SIT:
174                         /* get sit block addr */
175                         fio.blk_addr = current_sit_addr(sbi,
176                                         blkno * SIT_ENTRY_PER_BLOCK);
177                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
178                                 goto out;
179                         prev_blk_addr = fio.blk_addr;
180                         break;
181                 case META_SSA:
182                 case META_CP:
183                 case META_POR:
184                         fio.blk_addr = blkno;
185                         break;
186                 default:
187                         BUG();
188                 }
189
190                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
191                 if (!page)
192                         continue;
193                 if (PageUptodate(page)) {
194                         f2fs_put_page(page, 1);
195                         continue;
196                 }
197
198                 fio.page = page;
199                 f2fs_submit_page_mbio(&fio);
200                 f2fs_put_page(page, 0);
201         }
202 out:
203         f2fs_submit_merged_bio(sbi, META, READ);
204         return blkno - start;
205 }
206
207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
208 {
209         struct page *page;
210         bool readahead = false;
211
212         page = find_get_page(META_MAPPING(sbi), index);
213         if (!page || (page && !PageUptodate(page)))
214                 readahead = true;
215         f2fs_put_page(page, 0);
216
217         if (readahead)
218                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
219 }
220
221 static int f2fs_write_meta_page(struct page *page,
222                                 struct writeback_control *wbc)
223 {
224         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
225
226         trace_f2fs_writepage(page, META);
227
228         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
229                 goto redirty_out;
230         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
231                 goto redirty_out;
232         if (unlikely(f2fs_cp_error(sbi)))
233                 goto redirty_out;
234
235         f2fs_wait_on_page_writeback(page, META);
236         write_meta_page(sbi, page);
237         dec_page_count(sbi, F2FS_DIRTY_META);
238         unlock_page(page);
239
240         if (wbc->for_reclaim)
241                 f2fs_submit_merged_bio(sbi, META, WRITE);
242         return 0;
243
244 redirty_out:
245         redirty_page_for_writepage(wbc, page);
246         return AOP_WRITEPAGE_ACTIVATE;
247 }
248
249 static int f2fs_write_meta_pages(struct address_space *mapping,
250                                 struct writeback_control *wbc)
251 {
252         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
253         long diff, written;
254
255         trace_f2fs_writepages(mapping->host, wbc, META);
256
257         /* collect a number of dirty meta pages and write together */
258         if (wbc->for_kupdate ||
259                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
260                 goto skip_write;
261
262         /* if mounting is failed, skip writing node pages */
263         mutex_lock(&sbi->cp_mutex);
264         diff = nr_pages_to_write(sbi, META, wbc);
265         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
266         mutex_unlock(&sbi->cp_mutex);
267         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
268         return 0;
269
270 skip_write:
271         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
272         return 0;
273 }
274
275 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
276                                                 long nr_to_write)
277 {
278         struct address_space *mapping = META_MAPPING(sbi);
279         pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
280         struct pagevec pvec;
281         long nwritten = 0;
282         struct writeback_control wbc = {
283                 .for_reclaim = 0,
284         };
285
286         pagevec_init(&pvec, 0);
287
288         while (index <= end) {
289                 int i, nr_pages;
290                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291                                 PAGECACHE_TAG_DIRTY,
292                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
293                 if (unlikely(nr_pages == 0))
294                         break;
295
296                 for (i = 0; i < nr_pages; i++) {
297                         struct page *page = pvec.pages[i];
298
299                         if (prev == LONG_MAX)
300                                 prev = page->index - 1;
301                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
302                                 pagevec_release(&pvec);
303                                 goto stop;
304                         }
305
306                         lock_page(page);
307
308                         if (unlikely(page->mapping != mapping)) {
309 continue_unlock:
310                                 unlock_page(page);
311                                 continue;
312                         }
313                         if (!PageDirty(page)) {
314                                 /* someone wrote it for us */
315                                 goto continue_unlock;
316                         }
317
318                         if (!clear_page_dirty_for_io(page))
319                                 goto continue_unlock;
320
321                         if (mapping->a_ops->writepage(page, &wbc)) {
322                                 unlock_page(page);
323                                 break;
324                         }
325                         nwritten++;
326                         prev = page->index;
327                         if (unlikely(nwritten >= nr_to_write))
328                                 break;
329                 }
330                 pagevec_release(&pvec);
331                 cond_resched();
332         }
333 stop:
334         if (nwritten)
335                 f2fs_submit_merged_bio(sbi, type, WRITE);
336
337         return nwritten;
338 }
339
340 static int f2fs_set_meta_page_dirty(struct page *page)
341 {
342         trace_f2fs_set_page_dirty(page, META);
343
344         SetPageUptodate(page);
345         if (!PageDirty(page)) {
346                 __set_page_dirty_nobuffers(page);
347                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
348                 SetPagePrivate(page);
349                 f2fs_trace_pid(page);
350                 return 1;
351         }
352         return 0;
353 }
354
355 const struct address_space_operations f2fs_meta_aops = {
356         .writepage      = f2fs_write_meta_page,
357         .writepages     = f2fs_write_meta_pages,
358         .set_page_dirty = f2fs_set_meta_page_dirty,
359         .invalidatepage = f2fs_invalidate_page,
360         .releasepage    = f2fs_release_page,
361 };
362
363 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
364 {
365         struct inode_management *im = &sbi->im[type];
366         struct ino_entry *e, *tmp;
367
368         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
369 retry:
370         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
371
372         spin_lock(&im->ino_lock);
373         e = radix_tree_lookup(&im->ino_root, ino);
374         if (!e) {
375                 e = tmp;
376                 if (radix_tree_insert(&im->ino_root, ino, e)) {
377                         spin_unlock(&im->ino_lock);
378                         radix_tree_preload_end();
379                         goto retry;
380                 }
381                 memset(e, 0, sizeof(struct ino_entry));
382                 e->ino = ino;
383
384                 list_add_tail(&e->list, &im->ino_list);
385                 if (type != ORPHAN_INO)
386                         im->ino_num++;
387         }
388         spin_unlock(&im->ino_lock);
389         radix_tree_preload_end();
390
391         if (e != tmp)
392                 kmem_cache_free(ino_entry_slab, tmp);
393 }
394
395 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397         struct inode_management *im = &sbi->im[type];
398         struct ino_entry *e;
399
400         spin_lock(&im->ino_lock);
401         e = radix_tree_lookup(&im->ino_root, ino);
402         if (e) {
403                 list_del(&e->list);
404                 radix_tree_delete(&im->ino_root, ino);
405                 im->ino_num--;
406                 spin_unlock(&im->ino_lock);
407                 kmem_cache_free(ino_entry_slab, e);
408                 return;
409         }
410         spin_unlock(&im->ino_lock);
411 }
412
413 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
414 {
415         /* add new dirty ino entry into list */
416         __add_ino_entry(sbi, ino, type);
417 }
418
419 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
420 {
421         /* remove dirty ino entry from list */
422         __remove_ino_entry(sbi, ino, type);
423 }
424
425 /* mode should be APPEND_INO or UPDATE_INO */
426 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
427 {
428         struct inode_management *im = &sbi->im[mode];
429         struct ino_entry *e;
430
431         spin_lock(&im->ino_lock);
432         e = radix_tree_lookup(&im->ino_root, ino);
433         spin_unlock(&im->ino_lock);
434         return e ? true : false;
435 }
436
437 void release_dirty_inode(struct f2fs_sb_info *sbi)
438 {
439         struct ino_entry *e, *tmp;
440         int i;
441
442         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
443                 struct inode_management *im = &sbi->im[i];
444
445                 spin_lock(&im->ino_lock);
446                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
447                         list_del(&e->list);
448                         radix_tree_delete(&im->ino_root, e->ino);
449                         kmem_cache_free(ino_entry_slab, e);
450                         im->ino_num--;
451                 }
452                 spin_unlock(&im->ino_lock);
453         }
454 }
455
456 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
457 {
458         struct inode_management *im = &sbi->im[ORPHAN_INO];
459         int err = 0;
460
461         spin_lock(&im->ino_lock);
462         if (unlikely(im->ino_num >= sbi->max_orphans))
463                 err = -ENOSPC;
464         else
465                 im->ino_num++;
466         spin_unlock(&im->ino_lock);
467
468         return err;
469 }
470
471 void release_orphan_inode(struct f2fs_sb_info *sbi)
472 {
473         struct inode_management *im = &sbi->im[ORPHAN_INO];
474
475         spin_lock(&im->ino_lock);
476         f2fs_bug_on(sbi, im->ino_num == 0);
477         im->ino_num--;
478         spin_unlock(&im->ino_lock);
479 }
480
481 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
482 {
483         /* add new orphan ino entry into list */
484         __add_ino_entry(sbi, ino, ORPHAN_INO);
485 }
486
487 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
488 {
489         /* remove orphan entry from orphan list */
490         __remove_ino_entry(sbi, ino, ORPHAN_INO);
491 }
492
493 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
494 {
495         struct inode *inode;
496
497         inode = f2fs_iget(sbi->sb, ino);
498         if (IS_ERR(inode)) {
499                 /*
500                  * there should be a bug that we can't find the entry
501                  * to orphan inode.
502                  */
503                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
504                 return PTR_ERR(inode);
505         }
506
507         clear_nlink(inode);
508
509         /* truncate all the data during iput */
510         iput(inode);
511         return 0;
512 }
513
514 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
515 {
516         block_t start_blk, orphan_blocks, i, j;
517         int err;
518
519         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
520                 return 0;
521
522         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
523         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
524
525         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
526
527         for (i = 0; i < orphan_blocks; i++) {
528                 struct page *page = get_meta_page(sbi, start_blk + i);
529                 struct f2fs_orphan_block *orphan_blk;
530
531                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
532                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
533                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
534                         err = recover_orphan_inode(sbi, ino);
535                         if (err) {
536                                 f2fs_put_page(page, 1);
537                                 return err;
538                         }
539                 }
540                 f2fs_put_page(page, 1);
541         }
542         /* clear Orphan Flag */
543         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
544         return 0;
545 }
546
547 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
548 {
549         struct list_head *head;
550         struct f2fs_orphan_block *orphan_blk = NULL;
551         unsigned int nentries = 0;
552         unsigned short index = 1;
553         unsigned short orphan_blocks;
554         struct page *page = NULL;
555         struct ino_entry *orphan = NULL;
556         struct inode_management *im = &sbi->im[ORPHAN_INO];
557
558         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
559
560         /*
561          * we don't need to do spin_lock(&im->ino_lock) here, since all the
562          * orphan inode operations are covered under f2fs_lock_op().
563          * And, spin_lock should be avoided due to page operations below.
564          */
565         head = &im->ino_list;
566
567         /* loop for each orphan inode entry and write them in Jornal block */
568         list_for_each_entry(orphan, head, list) {
569                 if (!page) {
570                         page = grab_meta_page(sbi, start_blk++);
571                         orphan_blk =
572                                 (struct f2fs_orphan_block *)page_address(page);
573                         memset(orphan_blk, 0, sizeof(*orphan_blk));
574                 }
575
576                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
577
578                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
579                         /*
580                          * an orphan block is full of 1020 entries,
581                          * then we need to flush current orphan blocks
582                          * and bring another one in memory
583                          */
584                         orphan_blk->blk_addr = cpu_to_le16(index);
585                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
586                         orphan_blk->entry_count = cpu_to_le32(nentries);
587                         set_page_dirty(page);
588                         f2fs_put_page(page, 1);
589                         index++;
590                         nentries = 0;
591                         page = NULL;
592                 }
593         }
594
595         if (page) {
596                 orphan_blk->blk_addr = cpu_to_le16(index);
597                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
598                 orphan_blk->entry_count = cpu_to_le32(nentries);
599                 set_page_dirty(page);
600                 f2fs_put_page(page, 1);
601         }
602 }
603
604 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
605                                 block_t cp_addr, unsigned long long *version)
606 {
607         struct page *cp_page_1, *cp_page_2 = NULL;
608         unsigned long blk_size = sbi->blocksize;
609         struct f2fs_checkpoint *cp_block;
610         unsigned long long cur_version = 0, pre_version = 0;
611         size_t crc_offset;
612         __u32 crc = 0;
613
614         /* Read the 1st cp block in this CP pack */
615         cp_page_1 = get_meta_page(sbi, cp_addr);
616
617         /* get the version number */
618         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
619         crc_offset = le32_to_cpu(cp_block->checksum_offset);
620         if (crc_offset >= blk_size)
621                 goto invalid_cp1;
622
623         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
624         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
625                 goto invalid_cp1;
626
627         pre_version = cur_cp_version(cp_block);
628
629         /* Read the 2nd cp block in this CP pack */
630         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
631         cp_page_2 = get_meta_page(sbi, cp_addr);
632
633         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
634         crc_offset = le32_to_cpu(cp_block->checksum_offset);
635         if (crc_offset >= blk_size)
636                 goto invalid_cp2;
637
638         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
639         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
640                 goto invalid_cp2;
641
642         cur_version = cur_cp_version(cp_block);
643
644         if (cur_version == pre_version) {
645                 *version = cur_version;
646                 f2fs_put_page(cp_page_2, 1);
647                 return cp_page_1;
648         }
649 invalid_cp2:
650         f2fs_put_page(cp_page_2, 1);
651 invalid_cp1:
652         f2fs_put_page(cp_page_1, 1);
653         return NULL;
654 }
655
656 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
657 {
658         struct f2fs_checkpoint *cp_block;
659         struct f2fs_super_block *fsb = sbi->raw_super;
660         struct page *cp1, *cp2, *cur_page;
661         unsigned long blk_size = sbi->blocksize;
662         unsigned long long cp1_version = 0, cp2_version = 0;
663         unsigned long long cp_start_blk_no;
664         unsigned int cp_blks = 1 + __cp_payload(sbi);
665         block_t cp_blk_no;
666         int i;
667
668         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
669         if (!sbi->ckpt)
670                 return -ENOMEM;
671         /*
672          * Finding out valid cp block involves read both
673          * sets( cp pack1 and cp pack 2)
674          */
675         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
676         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
677
678         /* The second checkpoint pack should start at the next segment */
679         cp_start_blk_no += ((unsigned long long)1) <<
680                                 le32_to_cpu(fsb->log_blocks_per_seg);
681         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
682
683         if (cp1 && cp2) {
684                 if (ver_after(cp2_version, cp1_version))
685                         cur_page = cp2;
686                 else
687                         cur_page = cp1;
688         } else if (cp1) {
689                 cur_page = cp1;
690         } else if (cp2) {
691                 cur_page = cp2;
692         } else {
693                 goto fail_no_cp;
694         }
695
696         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
697         memcpy(sbi->ckpt, cp_block, blk_size);
698
699         if (cp_blks <= 1)
700                 goto done;
701
702         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
703         if (cur_page == cp2)
704                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
705
706         for (i = 1; i < cp_blks; i++) {
707                 void *sit_bitmap_ptr;
708                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
709
710                 cur_page = get_meta_page(sbi, cp_blk_no + i);
711                 sit_bitmap_ptr = page_address(cur_page);
712                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
713                 f2fs_put_page(cur_page, 1);
714         }
715 done:
716         f2fs_put_page(cp1, 1);
717         f2fs_put_page(cp2, 1);
718         return 0;
719
720 fail_no_cp:
721         kfree(sbi->ckpt);
722         return -EINVAL;
723 }
724
725 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
726 {
727         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
728
729         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
730                 return -EEXIST;
731
732         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
733         F2FS_I(inode)->dirty_dir = new;
734         list_add_tail(&new->list, &sbi->dir_inode_list);
735         stat_inc_dirty_dir(sbi);
736         return 0;
737 }
738
739 void update_dirty_page(struct inode *inode, struct page *page)
740 {
741         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
742         struct inode_entry *new;
743         int ret = 0;
744
745         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
746                         !S_ISLNK(inode->i_mode))
747                 return;
748
749         if (!S_ISDIR(inode->i_mode)) {
750                 inode_inc_dirty_pages(inode);
751                 goto out;
752         }
753
754         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
755         new->inode = inode;
756         INIT_LIST_HEAD(&new->list);
757
758         spin_lock(&sbi->dir_inode_lock);
759         ret = __add_dirty_inode(inode, new);
760         inode_inc_dirty_pages(inode);
761         spin_unlock(&sbi->dir_inode_lock);
762
763         if (ret)
764                 kmem_cache_free(inode_entry_slab, new);
765 out:
766         SetPagePrivate(page);
767         f2fs_trace_pid(page);
768 }
769
770 void add_dirty_dir_inode(struct inode *inode)
771 {
772         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773         struct inode_entry *new =
774                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
775         int ret = 0;
776
777         new->inode = inode;
778         INIT_LIST_HEAD(&new->list);
779
780         spin_lock(&sbi->dir_inode_lock);
781         ret = __add_dirty_inode(inode, new);
782         spin_unlock(&sbi->dir_inode_lock);
783
784         if (ret)
785                 kmem_cache_free(inode_entry_slab, new);
786 }
787
788 void remove_dirty_dir_inode(struct inode *inode)
789 {
790         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
791         struct inode_entry *entry;
792
793         if (!S_ISDIR(inode->i_mode))
794                 return;
795
796         spin_lock(&sbi->dir_inode_lock);
797         if (get_dirty_pages(inode) ||
798                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
799                 spin_unlock(&sbi->dir_inode_lock);
800                 return;
801         }
802
803         entry = F2FS_I(inode)->dirty_dir;
804         list_del(&entry->list);
805         F2FS_I(inode)->dirty_dir = NULL;
806         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
807         stat_dec_dirty_dir(sbi);
808         spin_unlock(&sbi->dir_inode_lock);
809         kmem_cache_free(inode_entry_slab, entry);
810
811         /* Only from the recovery routine */
812         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
813                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
814                 iput(inode);
815         }
816 }
817
818 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
819 {
820         struct list_head *head;
821         struct inode_entry *entry;
822         struct inode *inode;
823 retry:
824         if (unlikely(f2fs_cp_error(sbi)))
825                 return;
826
827         spin_lock(&sbi->dir_inode_lock);
828
829         head = &sbi->dir_inode_list;
830         if (list_empty(head)) {
831                 spin_unlock(&sbi->dir_inode_lock);
832                 return;
833         }
834         entry = list_entry(head->next, struct inode_entry, list);
835         inode = igrab(entry->inode);
836         spin_unlock(&sbi->dir_inode_lock);
837         if (inode) {
838                 filemap_fdatawrite(inode->i_mapping);
839                 iput(inode);
840         } else {
841                 /*
842                  * We should submit bio, since it exists several
843                  * wribacking dentry pages in the freeing inode.
844                  */
845                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
846                 cond_resched();
847         }
848         goto retry;
849 }
850
851 /*
852  * Freeze all the FS-operations for checkpoint.
853  */
854 static int block_operations(struct f2fs_sb_info *sbi)
855 {
856         struct writeback_control wbc = {
857                 .sync_mode = WB_SYNC_ALL,
858                 .nr_to_write = LONG_MAX,
859                 .for_reclaim = 0,
860         };
861         struct blk_plug plug;
862         int err = 0;
863
864         blk_start_plug(&plug);
865
866 retry_flush_dents:
867         f2fs_lock_all(sbi);
868         /* write all the dirty dentry pages */
869         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
870                 f2fs_unlock_all(sbi);
871                 sync_dirty_dir_inodes(sbi);
872                 if (unlikely(f2fs_cp_error(sbi))) {
873                         err = -EIO;
874                         goto out;
875                 }
876                 goto retry_flush_dents;
877         }
878
879         /*
880          * POR: we should ensure that there are no dirty node pages
881          * until finishing nat/sit flush.
882          */
883 retry_flush_nodes:
884         down_write(&sbi->node_write);
885
886         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
887                 up_write(&sbi->node_write);
888                 sync_node_pages(sbi, 0, &wbc);
889                 if (unlikely(f2fs_cp_error(sbi))) {
890                         f2fs_unlock_all(sbi);
891                         err = -EIO;
892                         goto out;
893                 }
894                 goto retry_flush_nodes;
895         }
896 out:
897         blk_finish_plug(&plug);
898         return err;
899 }
900
901 static void unblock_operations(struct f2fs_sb_info *sbi)
902 {
903         up_write(&sbi->node_write);
904         f2fs_unlock_all(sbi);
905 }
906
907 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
908 {
909         DEFINE_WAIT(wait);
910
911         for (;;) {
912                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
913
914                 if (!get_pages(sbi, F2FS_WRITEBACK))
915                         break;
916
917                 io_schedule();
918         }
919         finish_wait(&sbi->cp_wait, &wait);
920 }
921
922 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
923 {
924         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
925         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
926         struct f2fs_nm_info *nm_i = NM_I(sbi);
927         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
928         nid_t last_nid = nm_i->next_scan_nid;
929         block_t start_blk;
930         unsigned int data_sum_blocks, orphan_blocks;
931         __u32 crc32 = 0;
932         int i;
933         int cp_payload_blks = __cp_payload(sbi);
934         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
935         bool invalidate = false;
936
937         /*
938          * This avoids to conduct wrong roll-forward operations and uses
939          * metapages, so should be called prior to sync_meta_pages below.
940          */
941         if (discard_next_dnode(sbi, discard_blk))
942                 invalidate = true;
943
944         /* Flush all the NAT/SIT pages */
945         while (get_pages(sbi, F2FS_DIRTY_META)) {
946                 sync_meta_pages(sbi, META, LONG_MAX);
947                 if (unlikely(f2fs_cp_error(sbi)))
948                         return;
949         }
950
951         next_free_nid(sbi, &last_nid);
952
953         /*
954          * modify checkpoint
955          * version number is already updated
956          */
957         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
958         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
959         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
960         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
961                 ckpt->cur_node_segno[i] =
962                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
963                 ckpt->cur_node_blkoff[i] =
964                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
965                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
966                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
967         }
968         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
969                 ckpt->cur_data_segno[i] =
970                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
971                 ckpt->cur_data_blkoff[i] =
972                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
973                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
974                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
975         }
976
977         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
978         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
979         ckpt->next_free_nid = cpu_to_le32(last_nid);
980
981         /* 2 cp  + n data seg summary + orphan inode blocks */
982         data_sum_blocks = npages_for_summary_flush(sbi, false);
983         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
984                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
985         else
986                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
987
988         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
989         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
990                         orphan_blocks);
991
992         if (__remain_node_summaries(cpc->reason))
993                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
994                                 cp_payload_blks + data_sum_blocks +
995                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
996         else
997                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
998                                 cp_payload_blks + data_sum_blocks +
999                                 orphan_blocks);
1000
1001         if (cpc->reason == CP_UMOUNT)
1002                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1003         else
1004                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1005
1006         if (cpc->reason == CP_FASTBOOT)
1007                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1008         else
1009                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1010
1011         if (orphan_num)
1012                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1013         else
1014                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1015
1016         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1017                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1018
1019         /* update SIT/NAT bitmap */
1020         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1021         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1022
1023         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1024         *((__le32 *)((unsigned char *)ckpt +
1025                                 le32_to_cpu(ckpt->checksum_offset)))
1026                                 = cpu_to_le32(crc32);
1027
1028         start_blk = __start_cp_addr(sbi);
1029
1030         /* need to wait for end_io results */
1031         wait_on_all_pages_writeback(sbi);
1032         if (unlikely(f2fs_cp_error(sbi)))
1033                 return;
1034
1035         /* write out checkpoint buffer at block 0 */
1036         update_meta_page(sbi, ckpt, start_blk++);
1037
1038         for (i = 1; i < 1 + cp_payload_blks; i++)
1039                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1040                                                         start_blk++);
1041
1042         if (orphan_num) {
1043                 write_orphan_inodes(sbi, start_blk);
1044                 start_blk += orphan_blocks;
1045         }
1046
1047         write_data_summaries(sbi, start_blk);
1048         start_blk += data_sum_blocks;
1049         if (__remain_node_summaries(cpc->reason)) {
1050                 write_node_summaries(sbi, start_blk);
1051                 start_blk += NR_CURSEG_NODE_TYPE;
1052         }
1053
1054         /* writeout checkpoint block */
1055         update_meta_page(sbi, ckpt, start_blk);
1056
1057         /* wait for previous submitted node/meta pages writeback */
1058         wait_on_all_pages_writeback(sbi);
1059
1060         if (unlikely(f2fs_cp_error(sbi)))
1061                 return;
1062
1063         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1064         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1065
1066         /* update user_block_counts */
1067         sbi->last_valid_block_count = sbi->total_valid_block_count;
1068         sbi->alloc_valid_block_count = 0;
1069
1070         /* Here, we only have one bio having CP pack */
1071         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1072
1073         /* wait for previous submitted meta pages writeback */
1074         wait_on_all_pages_writeback(sbi);
1075
1076         /*
1077          * invalidate meta page which is used temporarily for zeroing out
1078          * block at the end of warm node chain.
1079          */
1080         if (invalidate)
1081                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1082                                                                 discard_blk);
1083
1084         release_dirty_inode(sbi);
1085
1086         if (unlikely(f2fs_cp_error(sbi)))
1087                 return;
1088
1089         clear_prefree_segments(sbi, cpc);
1090         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1091 }
1092
1093 /*
1094  * We guarantee that this checkpoint procedure will not fail.
1095  */
1096 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1097 {
1098         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1099         unsigned long long ckpt_ver;
1100
1101         mutex_lock(&sbi->cp_mutex);
1102
1103         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1104                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1105                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1106                 goto out;
1107         if (unlikely(f2fs_cp_error(sbi)))
1108                 goto out;
1109         if (f2fs_readonly(sbi->sb))
1110                 goto out;
1111
1112         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1113
1114         if (block_operations(sbi))
1115                 goto out;
1116
1117         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1118
1119         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1120         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1121         f2fs_submit_merged_bio(sbi, META, WRITE);
1122
1123         /*
1124          * update checkpoint pack index
1125          * Increase the version number so that
1126          * SIT entries and seg summaries are written at correct place
1127          */
1128         ckpt_ver = cur_cp_version(ckpt);
1129         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1130
1131         /* write cached NAT/SIT entries to NAT/SIT area */
1132         flush_nat_entries(sbi);
1133         flush_sit_entries(sbi, cpc);
1134
1135         /* unlock all the fs_lock[] in do_checkpoint() */
1136         do_checkpoint(sbi, cpc);
1137
1138         unblock_operations(sbi);
1139         stat_inc_cp_count(sbi->stat_info);
1140
1141         if (cpc->reason == CP_RECOVERY)
1142                 f2fs_msg(sbi->sb, KERN_NOTICE,
1143                         "checkpoint: version = %llx", ckpt_ver);
1144
1145         /* do checkpoint periodically */
1146         sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval);
1147 out:
1148         mutex_unlock(&sbi->cp_mutex);
1149         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1150 }
1151
1152 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1153 {
1154         int i;
1155
1156         for (i = 0; i < MAX_INO_ENTRY; i++) {
1157                 struct inode_management *im = &sbi->im[i];
1158
1159                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1160                 spin_lock_init(&im->ino_lock);
1161                 INIT_LIST_HEAD(&im->ino_list);
1162                 im->ino_num = 0;
1163         }
1164
1165         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1166                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1167                                 F2FS_ORPHANS_PER_BLOCK;
1168 }
1169
1170 int __init create_checkpoint_caches(void)
1171 {
1172         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1173                         sizeof(struct ino_entry));
1174         if (!ino_entry_slab)
1175                 return -ENOMEM;
1176         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1177                         sizeof(struct inode_entry));
1178         if (!inode_entry_slab) {
1179                 kmem_cache_destroy(ino_entry_slab);
1180                 return -ENOMEM;
1181         }
1182         return 0;
1183 }
1184
1185 void destroy_checkpoint_caches(void)
1186 {
1187         kmem_cache_destroy(ino_entry_slab);
1188         kmem_cache_destroy(inode_entry_slab);
1189 }