9aba42b78253e33a2d0d1d6a06f83ba0cf122ad0
[kvmfornfv.git] / kernel / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  * Copyright (C) 2014 Fujitsu.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/kthread.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24 #include <linux/freezer.h>
25 #include "async-thread.h"
26 #include "ctree.h"
27
28 #define WORK_DONE_BIT 0
29 #define WORK_ORDER_DONE_BIT 1
30 #define WORK_HIGH_PRIO_BIT 2
31
32 #define NO_THRESHOLD (-1)
33 #define DFT_THRESHOLD (32)
34
35 struct __btrfs_workqueue {
36         struct workqueue_struct *normal_wq;
37         /* List head pointing to ordered work list */
38         struct list_head ordered_list;
39
40         /* Spinlock for ordered_list */
41         spinlock_t list_lock;
42
43         /* Thresholding related variants */
44         atomic_t pending;
45
46         /* Up limit of concurrency workers */
47         int limit_active;
48
49         /* Current number of concurrency workers */
50         int current_active;
51
52         /* Threshold to change current_active */
53         int thresh;
54         unsigned int count;
55         spinlock_t thres_lock;
56 };
57
58 struct btrfs_workqueue {
59         struct __btrfs_workqueue *normal;
60         struct __btrfs_workqueue *high;
61 };
62
63 static void normal_work_helper(struct btrfs_work *work);
64
65 #define BTRFS_WORK_HELPER(name)                                 \
66 void btrfs_##name(struct work_struct *arg)                              \
67 {                                                                       \
68         struct btrfs_work *work = container_of(arg, struct btrfs_work,  \
69                                                normal_work);            \
70         normal_work_helper(work);                                       \
71 }
72
73 BTRFS_WORK_HELPER(worker_helper);
74 BTRFS_WORK_HELPER(delalloc_helper);
75 BTRFS_WORK_HELPER(flush_delalloc_helper);
76 BTRFS_WORK_HELPER(cache_helper);
77 BTRFS_WORK_HELPER(submit_helper);
78 BTRFS_WORK_HELPER(fixup_helper);
79 BTRFS_WORK_HELPER(endio_helper);
80 BTRFS_WORK_HELPER(endio_meta_helper);
81 BTRFS_WORK_HELPER(endio_meta_write_helper);
82 BTRFS_WORK_HELPER(endio_raid56_helper);
83 BTRFS_WORK_HELPER(endio_repair_helper);
84 BTRFS_WORK_HELPER(rmw_helper);
85 BTRFS_WORK_HELPER(endio_write_helper);
86 BTRFS_WORK_HELPER(freespace_write_helper);
87 BTRFS_WORK_HELPER(delayed_meta_helper);
88 BTRFS_WORK_HELPER(readahead_helper);
89 BTRFS_WORK_HELPER(qgroup_rescan_helper);
90 BTRFS_WORK_HELPER(extent_refs_helper);
91 BTRFS_WORK_HELPER(scrub_helper);
92 BTRFS_WORK_HELPER(scrubwrc_helper);
93 BTRFS_WORK_HELPER(scrubnc_helper);
94 BTRFS_WORK_HELPER(scrubparity_helper);
95
96 static struct __btrfs_workqueue *
97 __btrfs_alloc_workqueue(const char *name, unsigned int flags, int limit_active,
98                          int thresh)
99 {
100         struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_NOFS);
101
102         if (!ret)
103                 return NULL;
104
105         ret->limit_active = limit_active;
106         atomic_set(&ret->pending, 0);
107         if (thresh == 0)
108                 thresh = DFT_THRESHOLD;
109         /* For low threshold, disabling threshold is a better choice */
110         if (thresh < DFT_THRESHOLD) {
111                 ret->current_active = limit_active;
112                 ret->thresh = NO_THRESHOLD;
113         } else {
114                 /*
115                  * For threshold-able wq, let its concurrency grow on demand.
116                  * Use minimal max_active at alloc time to reduce resource
117                  * usage.
118                  */
119                 ret->current_active = 1;
120                 ret->thresh = thresh;
121         }
122
123         if (flags & WQ_HIGHPRI)
124                 ret->normal_wq = alloc_workqueue("%s-%s-high", flags,
125                                                  ret->current_active, "btrfs",
126                                                  name);
127         else
128                 ret->normal_wq = alloc_workqueue("%s-%s", flags,
129                                                  ret->current_active, "btrfs",
130                                                  name);
131         if (!ret->normal_wq) {
132                 kfree(ret);
133                 return NULL;
134         }
135
136         INIT_LIST_HEAD(&ret->ordered_list);
137         spin_lock_init(&ret->list_lock);
138         spin_lock_init(&ret->thres_lock);
139         trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
140         return ret;
141 }
142
143 static inline void
144 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
145
146 struct btrfs_workqueue *btrfs_alloc_workqueue(const char *name,
147                                               unsigned int flags,
148                                               int limit_active,
149                                               int thresh)
150 {
151         struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_NOFS);
152
153         if (!ret)
154                 return NULL;
155
156         ret->normal = __btrfs_alloc_workqueue(name, flags & ~WQ_HIGHPRI,
157                                               limit_active, thresh);
158         if (!ret->normal) {
159                 kfree(ret);
160                 return NULL;
161         }
162
163         if (flags & WQ_HIGHPRI) {
164                 ret->high = __btrfs_alloc_workqueue(name, flags, limit_active,
165                                                     thresh);
166                 if (!ret->high) {
167                         __btrfs_destroy_workqueue(ret->normal);
168                         kfree(ret);
169                         return NULL;
170                 }
171         }
172         return ret;
173 }
174
175 /*
176  * Hook for threshold which will be called in btrfs_queue_work.
177  * This hook WILL be called in IRQ handler context,
178  * so workqueue_set_max_active MUST NOT be called in this hook
179  */
180 static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
181 {
182         if (wq->thresh == NO_THRESHOLD)
183                 return;
184         atomic_inc(&wq->pending);
185 }
186
187 /*
188  * Hook for threshold which will be called before executing the work,
189  * This hook is called in kthread content.
190  * So workqueue_set_max_active is called here.
191  */
192 static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
193 {
194         int new_current_active;
195         long pending;
196         int need_change = 0;
197
198         if (wq->thresh == NO_THRESHOLD)
199                 return;
200
201         atomic_dec(&wq->pending);
202         spin_lock(&wq->thres_lock);
203         /*
204          * Use wq->count to limit the calling frequency of
205          * workqueue_set_max_active.
206          */
207         wq->count++;
208         wq->count %= (wq->thresh / 4);
209         if (!wq->count)
210                 goto  out;
211         new_current_active = wq->current_active;
212
213         /*
214          * pending may be changed later, but it's OK since we really
215          * don't need it so accurate to calculate new_max_active.
216          */
217         pending = atomic_read(&wq->pending);
218         if (pending > wq->thresh)
219                 new_current_active++;
220         if (pending < wq->thresh / 2)
221                 new_current_active--;
222         new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
223         if (new_current_active != wq->current_active)  {
224                 need_change = 1;
225                 wq->current_active = new_current_active;
226         }
227 out:
228         spin_unlock(&wq->thres_lock);
229
230         if (need_change) {
231                 workqueue_set_max_active(wq->normal_wq, wq->current_active);
232         }
233 }
234
235 static void run_ordered_work(struct __btrfs_workqueue *wq)
236 {
237         struct list_head *list = &wq->ordered_list;
238         struct btrfs_work *work;
239         spinlock_t *lock = &wq->list_lock;
240         unsigned long flags;
241
242         while (1) {
243                 spin_lock_irqsave(lock, flags);
244                 if (list_empty(list))
245                         break;
246                 work = list_entry(list->next, struct btrfs_work,
247                                   ordered_list);
248                 if (!test_bit(WORK_DONE_BIT, &work->flags))
249                         break;
250
251                 /*
252                  * we are going to call the ordered done function, but
253                  * we leave the work item on the list as a barrier so
254                  * that later work items that are done don't have their
255                  * functions called before this one returns
256                  */
257                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
258                         break;
259                 trace_btrfs_ordered_sched(work);
260                 spin_unlock_irqrestore(lock, flags);
261                 work->ordered_func(work);
262
263                 /* now take the lock again and drop our item from the list */
264                 spin_lock_irqsave(lock, flags);
265                 list_del(&work->ordered_list);
266                 spin_unlock_irqrestore(lock, flags);
267
268                 /*
269                  * we don't want to call the ordered free functions
270                  * with the lock held though
271                  */
272                 work->ordered_free(work);
273                 trace_btrfs_all_work_done(work);
274         }
275         spin_unlock_irqrestore(lock, flags);
276 }
277
278 static void normal_work_helper(struct btrfs_work *work)
279 {
280         struct __btrfs_workqueue *wq;
281         int need_order = 0;
282
283         /*
284          * We should not touch things inside work in the following cases:
285          * 1) after work->func() if it has no ordered_free
286          *    Since the struct is freed in work->func().
287          * 2) after setting WORK_DONE_BIT
288          *    The work may be freed in other threads almost instantly.
289          * So we save the needed things here.
290          */
291         if (work->ordered_func)
292                 need_order = 1;
293         wq = work->wq;
294
295         trace_btrfs_work_sched(work);
296         thresh_exec_hook(wq);
297         work->func(work);
298         if (need_order) {
299                 set_bit(WORK_DONE_BIT, &work->flags);
300                 run_ordered_work(wq);
301         }
302         if (!need_order)
303                 trace_btrfs_all_work_done(work);
304 }
305
306 void btrfs_init_work(struct btrfs_work *work, btrfs_work_func_t uniq_func,
307                      btrfs_func_t func,
308                      btrfs_func_t ordered_func,
309                      btrfs_func_t ordered_free)
310 {
311         work->func = func;
312         work->ordered_func = ordered_func;
313         work->ordered_free = ordered_free;
314         INIT_WORK(&work->normal_work, uniq_func);
315         INIT_LIST_HEAD(&work->ordered_list);
316         work->flags = 0;
317 }
318
319 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
320                                       struct btrfs_work *work)
321 {
322         unsigned long flags;
323
324         work->wq = wq;
325         thresh_queue_hook(wq);
326         if (work->ordered_func) {
327                 spin_lock_irqsave(&wq->list_lock, flags);
328                 list_add_tail(&work->ordered_list, &wq->ordered_list);
329                 spin_unlock_irqrestore(&wq->list_lock, flags);
330         }
331         trace_btrfs_work_queued(work);
332         queue_work(wq->normal_wq, &work->normal_work);
333 }
334
335 void btrfs_queue_work(struct btrfs_workqueue *wq,
336                       struct btrfs_work *work)
337 {
338         struct __btrfs_workqueue *dest_wq;
339
340         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
341                 dest_wq = wq->high;
342         else
343                 dest_wq = wq->normal;
344         __btrfs_queue_work(dest_wq, work);
345 }
346
347 static inline void
348 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
349 {
350         destroy_workqueue(wq->normal_wq);
351         trace_btrfs_workqueue_destroy(wq);
352         kfree(wq);
353 }
354
355 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
356 {
357         if (!wq)
358                 return;
359         if (wq->high)
360                 __btrfs_destroy_workqueue(wq->high);
361         __btrfs_destroy_workqueue(wq->normal);
362         kfree(wq);
363 }
364
365 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
366 {
367         if (!wq)
368                 return;
369         wq->normal->limit_active = limit_active;
370         if (wq->high)
371                 wq->high->limit_active = limit_active;
372 }
373
374 void btrfs_set_work_high_priority(struct btrfs_work *work)
375 {
376         set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
377 }