This patch includes scripts to create multiple yaml file for different
[kvmfornfv.git] / kernel / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
40 #include "cpqphp.h"
41
42 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
43                         u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
45                         u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47
48
49 static struct task_struct *cpqhp_event_thread;
50 static unsigned long pushbutton_pending;        /* = 0 */
51
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay)
54 {
55         /*
56          * XXX(hch): if someone is bored please convert all callers
57          * to call msleep_interruptible directly.  They really want
58          * to specify timeouts in natural units and spend a lot of
59          * effort converting them to jiffies..
60          */
61         msleep_interruptible(jiffies_to_msecs(delay));
62 }
63
64
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8 handle_switch_change(u8 change, struct controller *ctrl)
68 {
69         int hp_slot;
70         u8 rc = 0;
71         u16 temp_word;
72         struct pci_func *func;
73         struct event_info *taskInfo;
74
75         if (!change)
76                 return 0;
77
78         /* Switch Change */
79         dbg("cpqsbd:  Switch interrupt received.\n");
80
81         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82                 if (change & (0x1L << hp_slot)) {
83                         /*
84                          * this one changed.
85                          */
86                         func = cpqhp_slot_find(ctrl->bus,
87                                 (hp_slot + ctrl->slot_device_offset), 0);
88
89                         /* this is the structure that tells the worker thread
90                          * what to do
91                          */
92                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93                         ctrl->next_event = (ctrl->next_event + 1) % 10;
94                         taskInfo->hp_slot = hp_slot;
95
96                         rc++;
97
98                         temp_word = ctrl->ctrl_int_comp >> 16;
99                         func->presence_save = (temp_word >> hp_slot) & 0x01;
100                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103                                 /*
104                                  * Switch opened
105                                  */
106
107                                 func->switch_save = 0;
108
109                                 taskInfo->event_type = INT_SWITCH_OPEN;
110                         } else {
111                                 /*
112                                  * Switch closed
113                                  */
114
115                                 func->switch_save = 0x10;
116
117                                 taskInfo->event_type = INT_SWITCH_CLOSE;
118                         }
119                 }
120         }
121
122         return rc;
123 }
124
125 /**
126  * cpqhp_find_slot - find the struct slot of given device
127  * @ctrl: scan lots of this controller
128  * @device: the device id to find
129  */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132         struct slot *slot = ctrl->slot;
133
134         while (slot && (slot->device != device))
135                 slot = slot->next;
136
137         return slot;
138 }
139
140
141 static u8 handle_presence_change(u16 change, struct controller *ctrl)
142 {
143         int hp_slot;
144         u8 rc = 0;
145         u8 temp_byte;
146         u16 temp_word;
147         struct pci_func *func;
148         struct event_info *taskInfo;
149         struct slot *p_slot;
150
151         if (!change)
152                 return 0;
153
154         /*
155          * Presence Change
156          */
157         dbg("cpqsbd:  Presence/Notify input change.\n");
158         dbg("         Changed bits are 0x%4.4x\n", change );
159
160         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161                 if (change & (0x0101 << hp_slot)) {
162                         /*
163                          * this one changed.
164                          */
165                         func = cpqhp_slot_find(ctrl->bus,
166                                 (hp_slot + ctrl->slot_device_offset), 0);
167
168                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169                         ctrl->next_event = (ctrl->next_event + 1) % 10;
170                         taskInfo->hp_slot = hp_slot;
171
172                         rc++;
173
174                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175                         if (!p_slot)
176                                 return 0;
177
178                         /* If the switch closed, must be a button
179                          * If not in button mode, nevermind
180                          */
181                         if (func->switch_save && (ctrl->push_button == 1)) {
182                                 temp_word = ctrl->ctrl_int_comp >> 16;
183                                 temp_byte = (temp_word >> hp_slot) & 0x01;
184                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186                                 if (temp_byte != func->presence_save) {
187                                         /*
188                                          * button Pressed (doesn't do anything)
189                                          */
190                                         dbg("hp_slot %d button pressed\n", hp_slot);
191                                         taskInfo->event_type = INT_BUTTON_PRESS;
192                                 } else {
193                                         /*
194                                          * button Released - TAKE ACTION!!!!
195                                          */
196                                         dbg("hp_slot %d button released\n", hp_slot);
197                                         taskInfo->event_type = INT_BUTTON_RELEASE;
198
199                                         /* Cancel if we are still blinking */
200                                         if ((p_slot->state == BLINKINGON_STATE)
201                                             || (p_slot->state == BLINKINGOFF_STATE)) {
202                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
203                                                 dbg("hp_slot %d button cancel\n", hp_slot);
204                                         } else if ((p_slot->state == POWERON_STATE)
205                                                    || (p_slot->state == POWEROFF_STATE)) {
206                                                 /* info(msg_button_ignore, p_slot->number); */
207                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
208                                                 dbg("hp_slot %d button ignore\n", hp_slot);
209                                         }
210                                 }
211                         } else {
212                                 /* Switch is open, assume a presence change
213                                  * Save the presence state
214                                  */
215                                 temp_word = ctrl->ctrl_int_comp >> 16;
216                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
217                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218
219                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221                                         /* Present */
222                                         taskInfo->event_type = INT_PRESENCE_ON;
223                                 } else {
224                                         /* Not Present */
225                                         taskInfo->event_type = INT_PRESENCE_OFF;
226                                 }
227                         }
228                 }
229         }
230
231         return rc;
232 }
233
234
235 static u8 handle_power_fault(u8 change, struct controller *ctrl)
236 {
237         int hp_slot;
238         u8 rc = 0;
239         struct pci_func *func;
240         struct event_info *taskInfo;
241
242         if (!change)
243                 return 0;
244
245         /*
246          * power fault
247          */
248
249         info("power fault interrupt\n");
250
251         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252                 if (change & (0x01 << hp_slot)) {
253                         /*
254                          * this one changed.
255                          */
256                         func = cpqhp_slot_find(ctrl->bus,
257                                 (hp_slot + ctrl->slot_device_offset), 0);
258
259                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260                         ctrl->next_event = (ctrl->next_event + 1) % 10;
261                         taskInfo->hp_slot = hp_slot;
262
263                         rc++;
264
265                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266                                 /*
267                                  * power fault Cleared
268                                  */
269                                 func->status = 0x00;
270
271                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272                         } else {
273                                 /*
274                                  * power fault
275                                  */
276                                 taskInfo->event_type = INT_POWER_FAULT;
277
278                                 if (ctrl->rev < 4) {
279                                         amber_LED_on (ctrl, hp_slot);
280                                         green_LED_off (ctrl, hp_slot);
281                                         set_SOGO (ctrl);
282
283                                         /* this is a fatal condition, we want
284                                          * to crash the machine to protect from
285                                          * data corruption. simulated_NMI
286                                          * shouldn't ever return */
287                                         /* FIXME
288                                         simulated_NMI(hp_slot, ctrl); */
289
290                                         /* The following code causes a software
291                                          * crash just in case simulated_NMI did
292                                          * return */
293                                         /*FIXME
294                                         panic(msg_power_fault); */
295                                 } else {
296                                         /* set power fault status for this board */
297                                         func->status = 0xFF;
298                                         info("power fault bit %x set\n", hp_slot);
299                                 }
300                         }
301                 }
302         }
303
304         return rc;
305 }
306
307
308 /**
309  * sort_by_size - sort nodes on the list by their length, smallest first.
310  * @head: list to sort
311  */
312 static int sort_by_size(struct pci_resource **head)
313 {
314         struct pci_resource *current_res;
315         struct pci_resource *next_res;
316         int out_of_order = 1;
317
318         if (!(*head))
319                 return 1;
320
321         if (!((*head)->next))
322                 return 0;
323
324         while (out_of_order) {
325                 out_of_order = 0;
326
327                 /* Special case for swapping list head */
328                 if (((*head)->next) &&
329                     ((*head)->length > (*head)->next->length)) {
330                         out_of_order++;
331                         current_res = *head;
332                         *head = (*head)->next;
333                         current_res->next = (*head)->next;
334                         (*head)->next = current_res;
335                 }
336
337                 current_res = *head;
338
339                 while (current_res->next && current_res->next->next) {
340                         if (current_res->next->length > current_res->next->next->length) {
341                                 out_of_order++;
342                                 next_res = current_res->next;
343                                 current_res->next = current_res->next->next;
344                                 current_res = current_res->next;
345                                 next_res->next = current_res->next;
346                                 current_res->next = next_res;
347                         } else
348                                 current_res = current_res->next;
349                 }
350         }  /* End of out_of_order loop */
351
352         return 0;
353 }
354
355
356 /**
357  * sort_by_max_size - sort nodes on the list by their length, largest first.
358  * @head: list to sort
359  */
360 static int sort_by_max_size(struct pci_resource **head)
361 {
362         struct pci_resource *current_res;
363         struct pci_resource *next_res;
364         int out_of_order = 1;
365
366         if (!(*head))
367                 return 1;
368
369         if (!((*head)->next))
370                 return 0;
371
372         while (out_of_order) {
373                 out_of_order = 0;
374
375                 /* Special case for swapping list head */
376                 if (((*head)->next) &&
377                     ((*head)->length < (*head)->next->length)) {
378                         out_of_order++;
379                         current_res = *head;
380                         *head = (*head)->next;
381                         current_res->next = (*head)->next;
382                         (*head)->next = current_res;
383                 }
384
385                 current_res = *head;
386
387                 while (current_res->next && current_res->next->next) {
388                         if (current_res->next->length < current_res->next->next->length) {
389                                 out_of_order++;
390                                 next_res = current_res->next;
391                                 current_res->next = current_res->next->next;
392                                 current_res = current_res->next;
393                                 next_res->next = current_res->next;
394                                 current_res->next = next_res;
395                         } else
396                                 current_res = current_res->next;
397                 }
398         }  /* End of out_of_order loop */
399
400         return 0;
401 }
402
403
404 /**
405  * do_pre_bridge_resource_split - find node of resources that are unused
406  * @head: new list head
407  * @orig_head: original list head
408  * @alignment: max node size (?)
409  */
410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411                                 struct pci_resource **orig_head, u32 alignment)
412 {
413         struct pci_resource *prevnode = NULL;
414         struct pci_resource *node;
415         struct pci_resource *split_node;
416         u32 rc;
417         u32 temp_dword;
418         dbg("do_pre_bridge_resource_split\n");
419
420         if (!(*head) || !(*orig_head))
421                 return NULL;
422
423         rc = cpqhp_resource_sort_and_combine(head);
424
425         if (rc)
426                 return NULL;
427
428         if ((*head)->base != (*orig_head)->base)
429                 return NULL;
430
431         if ((*head)->length == (*orig_head)->length)
432                 return NULL;
433
434
435         /* If we got here, there the bridge requires some of the resource, but
436          * we may be able to split some off of the front
437          */
438
439         node = *head;
440
441         if (node->length & (alignment -1)) {
442                 /* this one isn't an aligned length, so we'll make a new entry
443                  * and split it up.
444                  */
445                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446
447                 if (!split_node)
448                         return NULL;
449
450                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451
452                 split_node->base = node->base;
453                 split_node->length = temp_dword;
454
455                 node->length -= temp_dword;
456                 node->base += split_node->length;
457
458                 /* Put it in the list */
459                 *head = split_node;
460                 split_node->next = node;
461         }
462
463         if (node->length < alignment)
464                 return NULL;
465
466         /* Now unlink it */
467         if (*head == node) {
468                 *head = node->next;
469         } else {
470                 prevnode = *head;
471                 while (prevnode->next != node)
472                         prevnode = prevnode->next;
473
474                 prevnode->next = node->next;
475         }
476         node->next = NULL;
477
478         return node;
479 }
480
481
482 /**
483  * do_bridge_resource_split - find one node of resources that aren't in use
484  * @head: list head
485  * @alignment: max node size (?)
486  */
487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488 {
489         struct pci_resource *prevnode = NULL;
490         struct pci_resource *node;
491         u32 rc;
492         u32 temp_dword;
493
494         rc = cpqhp_resource_sort_and_combine(head);
495
496         if (rc)
497                 return NULL;
498
499         node = *head;
500
501         while (node->next) {
502                 prevnode = node;
503                 node = node->next;
504                 kfree(prevnode);
505         }
506
507         if (node->length < alignment)
508                 goto error;
509
510         if (node->base & (alignment - 1)) {
511                 /* Short circuit if adjusted size is too small */
512                 temp_dword = (node->base | (alignment-1)) + 1;
513                 if ((node->length - (temp_dword - node->base)) < alignment)
514                         goto error;
515
516                 node->length -= (temp_dword - node->base);
517                 node->base = temp_dword;
518         }
519
520         if (node->length & (alignment - 1))
521                 /* There's stuff in use after this node */
522                 goto error;
523
524         return node;
525 error:
526         kfree(node);
527         return NULL;
528 }
529
530
531 /**
532  * get_io_resource - find first node of given size not in ISA aliasing window.
533  * @head: list to search
534  * @size: size of node to find, must be a power of two.
535  *
536  * Description: This function sorts the resource list by size and then returns
537  * returns the first node of "size" length that is not in the ISA aliasing
538  * window.  If it finds a node larger than "size" it will split it up.
539  */
540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541 {
542         struct pci_resource *prevnode;
543         struct pci_resource *node;
544         struct pci_resource *split_node;
545         u32 temp_dword;
546
547         if (!(*head))
548                 return NULL;
549
550         if (cpqhp_resource_sort_and_combine(head))
551                 return NULL;
552
553         if (sort_by_size(head))
554                 return NULL;
555
556         for (node = *head; node; node = node->next) {
557                 if (node->length < size)
558                         continue;
559
560                 if (node->base & (size - 1)) {
561                         /* this one isn't base aligned properly
562                          * so we'll make a new entry and split it up
563                          */
564                         temp_dword = (node->base | (size-1)) + 1;
565
566                         /* Short circuit if adjusted size is too small */
567                         if ((node->length - (temp_dword - node->base)) < size)
568                                 continue;
569
570                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571
572                         if (!split_node)
573                                 return NULL;
574
575                         split_node->base = node->base;
576                         split_node->length = temp_dword - node->base;
577                         node->base = temp_dword;
578                         node->length -= split_node->length;
579
580                         /* Put it in the list */
581                         split_node->next = node->next;
582                         node->next = split_node;
583                 } /* End of non-aligned base */
584
585                 /* Don't need to check if too small since we already did */
586                 if (node->length > size) {
587                         /* this one is longer than we need
588                          * so we'll make a new entry and split it up
589                          */
590                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591
592                         if (!split_node)
593                                 return NULL;
594
595                         split_node->base = node->base + size;
596                         split_node->length = node->length - size;
597                         node->length = size;
598
599                         /* Put it in the list */
600                         split_node->next = node->next;
601                         node->next = split_node;
602                 }  /* End of too big on top end */
603
604                 /* For IO make sure it's not in the ISA aliasing space */
605                 if (node->base & 0x300L)
606                         continue;
607
608                 /* If we got here, then it is the right size
609                  * Now take it out of the list and break
610                  */
611                 if (*head == node) {
612                         *head = node->next;
613                 } else {
614                         prevnode = *head;
615                         while (prevnode->next != node)
616                                 prevnode = prevnode->next;
617
618                         prevnode->next = node->next;
619                 }
620                 node->next = NULL;
621                 break;
622         }
623
624         return node;
625 }
626
627
628 /**
629  * get_max_resource - get largest node which has at least the given size.
630  * @head: the list to search the node in
631  * @size: the minimum size of the node to find
632  *
633  * Description: Gets the largest node that is at least "size" big from the
634  * list pointed to by head.  It aligns the node on top and bottom
635  * to "size" alignment before returning it.
636  */
637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638 {
639         struct pci_resource *max;
640         struct pci_resource *temp;
641         struct pci_resource *split_node;
642         u32 temp_dword;
643
644         if (cpqhp_resource_sort_and_combine(head))
645                 return NULL;
646
647         if (sort_by_max_size(head))
648                 return NULL;
649
650         for (max = *head; max; max = max->next) {
651                 /* If not big enough we could probably just bail,
652                  * instead we'll continue to the next.
653                  */
654                 if (max->length < size)
655                         continue;
656
657                 if (max->base & (size - 1)) {
658                         /* this one isn't base aligned properly
659                          * so we'll make a new entry and split it up
660                          */
661                         temp_dword = (max->base | (size-1)) + 1;
662
663                         /* Short circuit if adjusted size is too small */
664                         if ((max->length - (temp_dword - max->base)) < size)
665                                 continue;
666
667                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668
669                         if (!split_node)
670                                 return NULL;
671
672                         split_node->base = max->base;
673                         split_node->length = temp_dword - max->base;
674                         max->base = temp_dword;
675                         max->length -= split_node->length;
676
677                         split_node->next = max->next;
678                         max->next = split_node;
679                 }
680
681                 if ((max->base + max->length) & (size - 1)) {
682                         /* this one isn't end aligned properly at the top
683                          * so we'll make a new entry and split it up
684                          */
685                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686
687                         if (!split_node)
688                                 return NULL;
689                         temp_dword = ((max->base + max->length) & ~(size - 1));
690                         split_node->base = temp_dword;
691                         split_node->length = max->length + max->base
692                                              - split_node->base;
693                         max->length -= split_node->length;
694
695                         split_node->next = max->next;
696                         max->next = split_node;
697                 }
698
699                 /* Make sure it didn't shrink too much when we aligned it */
700                 if (max->length < size)
701                         continue;
702
703                 /* Now take it out of the list */
704                 temp = *head;
705                 if (temp == max) {
706                         *head = max->next;
707                 } else {
708                         while (temp && temp->next != max)
709                                 temp = temp->next;
710
711                         if (temp)
712                                 temp->next = max->next;
713                 }
714
715                 max->next = NULL;
716                 break;
717         }
718
719         return max;
720 }
721
722
723 /**
724  * get_resource - find resource of given size and split up larger ones.
725  * @head: the list to search for resources
726  * @size: the size limit to use
727  *
728  * Description: This function sorts the resource list by size and then
729  * returns the first node of "size" length.  If it finds a node
730  * larger than "size" it will split it up.
731  *
732  * size must be a power of two.
733  */
734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735 {
736         struct pci_resource *prevnode;
737         struct pci_resource *node;
738         struct pci_resource *split_node;
739         u32 temp_dword;
740
741         if (cpqhp_resource_sort_and_combine(head))
742                 return NULL;
743
744         if (sort_by_size(head))
745                 return NULL;
746
747         for (node = *head; node; node = node->next) {
748                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749                     __func__, size, node, node->base, node->length);
750                 if (node->length < size)
751                         continue;
752
753                 if (node->base & (size - 1)) {
754                         dbg("%s: not aligned\n", __func__);
755                         /* this one isn't base aligned properly
756                          * so we'll make a new entry and split it up
757                          */
758                         temp_dword = (node->base | (size-1)) + 1;
759
760                         /* Short circuit if adjusted size is too small */
761                         if ((node->length - (temp_dword - node->base)) < size)
762                                 continue;
763
764                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765
766                         if (!split_node)
767                                 return NULL;
768
769                         split_node->base = node->base;
770                         split_node->length = temp_dword - node->base;
771                         node->base = temp_dword;
772                         node->length -= split_node->length;
773
774                         split_node->next = node->next;
775                         node->next = split_node;
776                 } /* End of non-aligned base */
777
778                 /* Don't need to check if too small since we already did */
779                 if (node->length > size) {
780                         dbg("%s: too big\n", __func__);
781                         /* this one is longer than we need
782                          * so we'll make a new entry and split it up
783                          */
784                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785
786                         if (!split_node)
787                                 return NULL;
788
789                         split_node->base = node->base + size;
790                         split_node->length = node->length - size;
791                         node->length = size;
792
793                         /* Put it in the list */
794                         split_node->next = node->next;
795                         node->next = split_node;
796                 }  /* End of too big on top end */
797
798                 dbg("%s: got one!!!\n", __func__);
799                 /* If we got here, then it is the right size
800                  * Now take it out of the list */
801                 if (*head == node) {
802                         *head = node->next;
803                 } else {
804                         prevnode = *head;
805                         while (prevnode->next != node)
806                                 prevnode = prevnode->next;
807
808                         prevnode->next = node->next;
809                 }
810                 node->next = NULL;
811                 break;
812         }
813         return node;
814 }
815
816
817 /**
818  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819  * @head: the list to sort and clean up
820  *
821  * Description: Sorts all of the nodes in the list in ascending order by
822  * their base addresses.  Also does garbage collection by
823  * combining adjacent nodes.
824  *
825  * Returns %0 if success.
826  */
827 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828 {
829         struct pci_resource *node1;
830         struct pci_resource *node2;
831         int out_of_order = 1;
832
833         dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834
835         if (!(*head))
836                 return 1;
837
838         dbg("*head->next = %p\n",(*head)->next);
839
840         if (!(*head)->next)
841                 return 0;       /* only one item on the list, already sorted! */
842
843         dbg("*head->base = 0x%x\n",(*head)->base);
844         dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845         while (out_of_order) {
846                 out_of_order = 0;
847
848                 /* Special case for swapping list head */
849                 if (((*head)->next) &&
850                     ((*head)->base > (*head)->next->base)) {
851                         node1 = *head;
852                         (*head) = (*head)->next;
853                         node1->next = (*head)->next;
854                         (*head)->next = node1;
855                         out_of_order++;
856                 }
857
858                 node1 = (*head);
859
860                 while (node1->next && node1->next->next) {
861                         if (node1->next->base > node1->next->next->base) {
862                                 out_of_order++;
863                                 node2 = node1->next;
864                                 node1->next = node1->next->next;
865                                 node1 = node1->next;
866                                 node2->next = node1->next;
867                                 node1->next = node2;
868                         } else
869                                 node1 = node1->next;
870                 }
871         }  /* End of out_of_order loop */
872
873         node1 = *head;
874
875         while (node1 && node1->next) {
876                 if ((node1->base + node1->length) == node1->next->base) {
877                         /* Combine */
878                         dbg("8..\n");
879                         node1->length += node1->next->length;
880                         node2 = node1->next;
881                         node1->next = node1->next->next;
882                         kfree(node2);
883                 } else
884                         node1 = node1->next;
885         }
886
887         return 0;
888 }
889
890
891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892 {
893         struct controller *ctrl = data;
894         u8 schedule_flag = 0;
895         u8 reset;
896         u16 misc;
897         u32 Diff;
898         u32 temp_dword;
899
900
901         misc = readw(ctrl->hpc_reg + MISC);
902         /*
903          * Check to see if it was our interrupt
904          */
905         if (!(misc & 0x000C))
906                 return IRQ_NONE;
907
908         if (misc & 0x0004) {
909                 /*
910                  * Serial Output interrupt Pending
911                  */
912
913                 /* Clear the interrupt */
914                 misc |= 0x0004;
915                 writew(misc, ctrl->hpc_reg + MISC);
916
917                 /* Read to clear posted writes */
918                 misc = readw(ctrl->hpc_reg + MISC);
919
920                 dbg ("%s - waking up\n", __func__);
921                 wake_up_interruptible(&ctrl->queue);
922         }
923
924         if (misc & 0x0008) {
925                 /* General-interrupt-input interrupt Pending */
926                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
927
928                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
929
930                 /* Clear the interrupt */
931                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933                 /* Read it back to clear any posted writes */
934                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936                 if (!Diff)
937                         /* Clear all interrupts */
938                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
939
940                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
941                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
942                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
943         }
944
945         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
946         if (reset & 0x40) {
947                 /* Bus reset has completed */
948                 reset &= 0xCF;
949                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
950                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
951                 wake_up_interruptible(&ctrl->queue);
952         }
953
954         if (schedule_flag) {
955                 wake_up_process(cpqhp_event_thread);
956                 dbg("Waking even thread");
957         }
958         return IRQ_HANDLED;
959 }
960
961
962 /**
963  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
964  * @busnumber: bus where new node is to be located
965  *
966  * Returns pointer to the new node or %NULL if unsuccessful.
967  */
968 struct pci_func *cpqhp_slot_create(u8 busnumber)
969 {
970         struct pci_func *new_slot;
971         struct pci_func *next;
972
973         new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
974         if (new_slot == NULL)
975                 return new_slot;
976
977         new_slot->next = NULL;
978         new_slot->configured = 1;
979
980         if (cpqhp_slot_list[busnumber] == NULL) {
981                 cpqhp_slot_list[busnumber] = new_slot;
982         } else {
983                 next = cpqhp_slot_list[busnumber];
984                 while (next->next != NULL)
985                         next = next->next;
986                 next->next = new_slot;
987         }
988         return new_slot;
989 }
990
991
992 /**
993  * slot_remove - Removes a node from the linked list of slots.
994  * @old_slot: slot to remove
995  *
996  * Returns %0 if successful, !0 otherwise.
997  */
998 static int slot_remove(struct pci_func *old_slot)
999 {
1000         struct pci_func *next;
1001
1002         if (old_slot == NULL)
1003                 return 1;
1004
1005         next = cpqhp_slot_list[old_slot->bus];
1006         if (next == NULL)
1007                 return 1;
1008
1009         if (next == old_slot) {
1010                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1011                 cpqhp_destroy_board_resources(old_slot);
1012                 kfree(old_slot);
1013                 return 0;
1014         }
1015
1016         while ((next->next != old_slot) && (next->next != NULL))
1017                 next = next->next;
1018
1019         if (next->next == old_slot) {
1020                 next->next = old_slot->next;
1021                 cpqhp_destroy_board_resources(old_slot);
1022                 kfree(old_slot);
1023                 return 0;
1024         } else
1025                 return 2;
1026 }
1027
1028
1029 /**
1030  * bridge_slot_remove - Removes a node from the linked list of slots.
1031  * @bridge: bridge to remove
1032  *
1033  * Returns %0 if successful, !0 otherwise.
1034  */
1035 static int bridge_slot_remove(struct pci_func *bridge)
1036 {
1037         u8 subordinateBus, secondaryBus;
1038         u8 tempBus;
1039         struct pci_func *next;
1040
1041         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1042         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1043
1044         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1045                 next = cpqhp_slot_list[tempBus];
1046
1047                 while (!slot_remove(next))
1048                         next = cpqhp_slot_list[tempBus];
1049         }
1050
1051         next = cpqhp_slot_list[bridge->bus];
1052
1053         if (next == NULL)
1054                 return 1;
1055
1056         if (next == bridge) {
1057                 cpqhp_slot_list[bridge->bus] = bridge->next;
1058                 goto out;
1059         }
1060
1061         while ((next->next != bridge) && (next->next != NULL))
1062                 next = next->next;
1063
1064         if (next->next != bridge)
1065                 return 2;
1066         next->next = bridge->next;
1067 out:
1068         kfree(bridge);
1069         return 0;
1070 }
1071
1072
1073 /**
1074  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1075  * @bus: bus to find
1076  * @device: device to find
1077  * @index: is %0 for first function found, %1 for the second...
1078  *
1079  * Returns pointer to the node if successful, %NULL otherwise.
1080  */
1081 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1082 {
1083         int found = -1;
1084         struct pci_func *func;
1085
1086         func = cpqhp_slot_list[bus];
1087
1088         if ((func == NULL) || ((func->device == device) && (index == 0)))
1089                 return func;
1090
1091         if (func->device == device)
1092                 found++;
1093
1094         while (func->next != NULL) {
1095                 func = func->next;
1096
1097                 if (func->device == device)
1098                         found++;
1099
1100                 if (found == index)
1101                         return func;
1102         }
1103
1104         return NULL;
1105 }
1106
1107
1108 /* DJZ: I don't think is_bridge will work as is.
1109  * FIXME */
1110 static int is_bridge(struct pci_func *func)
1111 {
1112         /* Check the header type */
1113         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1114                 return 1;
1115         else
1116                 return 0;
1117 }
1118
1119
1120 /**
1121  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1122  * @ctrl: controller to change frequency/mode for.
1123  * @adapter_speed: the speed of the adapter we want to match.
1124  * @hp_slot: the slot number where the adapter is installed.
1125  *
1126  * Returns %0 if we successfully change frequency and/or mode to match the
1127  * adapter speed.
1128  */
1129 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1130 {
1131         struct slot *slot;
1132         struct pci_bus *bus = ctrl->pci_bus;
1133         u8 reg;
1134         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135         u16 reg16;
1136         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137
1138         if (bus->cur_bus_speed == adapter_speed)
1139                 return 0;
1140
1141         /* We don't allow freq/mode changes if we find another adapter running
1142          * in another slot on this controller
1143          */
1144         for (slot = ctrl->slot; slot; slot = slot->next) {
1145                 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146                         continue;
1147                 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148                         continue;
1149                 if (slot->hotplug_slot->info->adapter_status == 0)
1150                         continue;
1151                 /* If another adapter is running on the same segment but at a
1152                  * lower speed/mode, we allow the new adapter to function at
1153                  * this rate if supported
1154                  */
1155                 if (bus->cur_bus_speed < adapter_speed)
1156                         return 0;
1157
1158                 return 1;
1159         }
1160
1161         /* If the controller doesn't support freq/mode changes and the
1162          * controller is running at a higher mode, we bail
1163          */
1164         if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165                 return 1;
1166
1167         /* But we allow the adapter to run at a lower rate if possible */
1168         if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169                 return 0;
1170
1171         /* We try to set the max speed supported by both the adapter and
1172          * controller
1173          */
1174         if (bus->max_bus_speed < adapter_speed) {
1175                 if (bus->cur_bus_speed == bus->max_bus_speed)
1176                         return 0;
1177                 adapter_speed = bus->max_bus_speed;
1178         }
1179
1180         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182
1183         set_SOGO(ctrl);
1184         wait_for_ctrl_irq(ctrl);
1185
1186         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187                 reg = 0xF5;
1188         else
1189                 reg = 0xF4;
1190         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191
1192         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193         reg16 &= ~0x000F;
1194         switch (adapter_speed) {
1195                 case(PCI_SPEED_133MHz_PCIX):
1196                         reg = 0x75;
1197                         reg16 |= 0xB;
1198                         break;
1199                 case(PCI_SPEED_100MHz_PCIX):
1200                         reg = 0x74;
1201                         reg16 |= 0xA;
1202                         break;
1203                 case(PCI_SPEED_66MHz_PCIX):
1204                         reg = 0x73;
1205                         reg16 |= 0x9;
1206                         break;
1207                 case(PCI_SPEED_66MHz):
1208                         reg = 0x73;
1209                         reg16 |= 0x1;
1210                         break;
1211                 default: /* 33MHz PCI 2.2 */
1212                         reg = 0x71;
1213                         break;
1214
1215         }
1216         reg16 |= 0xB << 12;
1217         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218
1219         mdelay(5);
1220
1221         /* Reenable interrupts */
1222         writel(0, ctrl->hpc_reg + INT_MASK);
1223
1224         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225
1226         /* Restart state machine */
1227         reg = ~0xF;
1228         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230
1231         /* Only if mode change...*/
1232         if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233                 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234                         set_SOGO(ctrl);
1235
1236         wait_for_ctrl_irq(ctrl);
1237         mdelay(1100);
1238
1239         /* Restore LED/Slot state */
1240         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242
1243         set_SOGO(ctrl);
1244         wait_for_ctrl_irq(ctrl);
1245
1246         bus->cur_bus_speed = adapter_speed;
1247         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248
1249         info("Successfully changed frequency/mode for adapter in slot %d\n",
1250                         slot->number);
1251         return 0;
1252 }
1253
1254 /* the following routines constitute the bulk of the
1255  * hotplug controller logic
1256  */
1257
1258
1259 /**
1260  * board_replaced - Called after a board has been replaced in the system.
1261  * @func: PCI device/function information
1262  * @ctrl: hotplug controller
1263  *
1264  * This is only used if we don't have resources for hot add.
1265  * Turns power on for the board.
1266  * Checks to see if board is the same.
1267  * If board is same, reconfigures it.
1268  * If board isn't same, turns it back off.
1269  */
1270 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271 {
1272         struct pci_bus *bus = ctrl->pci_bus;
1273         u8 hp_slot;
1274         u8 temp_byte;
1275         u8 adapter_speed;
1276         u32 rc = 0;
1277
1278         hp_slot = func->device - ctrl->slot_device_offset;
1279
1280         /*
1281          * The switch is open.
1282          */
1283         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1284                 rc = INTERLOCK_OPEN;
1285         /*
1286          * The board is already on
1287          */
1288         else if (is_slot_enabled (ctrl, hp_slot))
1289                 rc = CARD_FUNCTIONING;
1290         else {
1291                 mutex_lock(&ctrl->crit_sect);
1292
1293                 /* turn on board without attaching to the bus */
1294                 enable_slot_power (ctrl, hp_slot);
1295
1296                 set_SOGO(ctrl);
1297
1298                 /* Wait for SOBS to be unset */
1299                 wait_for_ctrl_irq (ctrl);
1300
1301                 /* Change bits in slot power register to force another shift out
1302                  * NOTE: this is to work around the timer bug */
1303                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1304                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1305                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1306
1307                 set_SOGO(ctrl);
1308
1309                 /* Wait for SOBS to be unset */
1310                 wait_for_ctrl_irq (ctrl);
1311
1312                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1313                 if (bus->cur_bus_speed != adapter_speed)
1314                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1315                                 rc = WRONG_BUS_FREQUENCY;
1316
1317                 /* turn off board without attaching to the bus */
1318                 disable_slot_power (ctrl, hp_slot);
1319
1320                 set_SOGO(ctrl);
1321
1322                 /* Wait for SOBS to be unset */
1323                 wait_for_ctrl_irq (ctrl);
1324
1325                 mutex_unlock(&ctrl->crit_sect);
1326
1327                 if (rc)
1328                         return rc;
1329
1330                 mutex_lock(&ctrl->crit_sect);
1331
1332                 slot_enable (ctrl, hp_slot);
1333                 green_LED_blink (ctrl, hp_slot);
1334
1335                 amber_LED_off (ctrl, hp_slot);
1336
1337                 set_SOGO(ctrl);
1338
1339                 /* Wait for SOBS to be unset */
1340                 wait_for_ctrl_irq (ctrl);
1341
1342                 mutex_unlock(&ctrl->crit_sect);
1343
1344                 /* Wait for ~1 second because of hot plug spec */
1345                 long_delay(1*HZ);
1346
1347                 /* Check for a power fault */
1348                 if (func->status == 0xFF) {
1349                         /* power fault occurred, but it was benign */
1350                         rc = POWER_FAILURE;
1351                         func->status = 0;
1352                 } else
1353                         rc = cpqhp_valid_replace(ctrl, func);
1354
1355                 if (!rc) {
1356                         /* It must be the same board */
1357
1358                         rc = cpqhp_configure_board(ctrl, func);
1359
1360                         /* If configuration fails, turn it off
1361                          * Get slot won't work for devices behind
1362                          * bridges, but in this case it will always be
1363                          * called for the "base" bus/dev/func of an
1364                          * adapter.
1365                          */
1366
1367                         mutex_lock(&ctrl->crit_sect);
1368
1369                         amber_LED_on (ctrl, hp_slot);
1370                         green_LED_off (ctrl, hp_slot);
1371                         slot_disable (ctrl, hp_slot);
1372
1373                         set_SOGO(ctrl);
1374
1375                         /* Wait for SOBS to be unset */
1376                         wait_for_ctrl_irq (ctrl);
1377
1378                         mutex_unlock(&ctrl->crit_sect);
1379
1380                         if (rc)
1381                                 return rc;
1382                         else
1383                                 return 1;
1384
1385                 } else {
1386                         /* Something is wrong
1387
1388                          * Get slot won't work for devices behind bridges, but
1389                          * in this case it will always be called for the "base"
1390                          * bus/dev/func of an adapter.
1391                          */
1392
1393                         mutex_lock(&ctrl->crit_sect);
1394
1395                         amber_LED_on (ctrl, hp_slot);
1396                         green_LED_off (ctrl, hp_slot);
1397                         slot_disable (ctrl, hp_slot);
1398
1399                         set_SOGO(ctrl);
1400
1401                         /* Wait for SOBS to be unset */
1402                         wait_for_ctrl_irq (ctrl);
1403
1404                         mutex_unlock(&ctrl->crit_sect);
1405                 }
1406
1407         }
1408         return rc;
1409
1410 }
1411
1412
1413 /**
1414  * board_added - Called after a board has been added to the system.
1415  * @func: PCI device/function info
1416  * @ctrl: hotplug controller
1417  *
1418  * Turns power on for the board.
1419  * Configures board.
1420  */
1421 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1422 {
1423         u8 hp_slot;
1424         u8 temp_byte;
1425         u8 adapter_speed;
1426         int index;
1427         u32 temp_register = 0xFFFFFFFF;
1428         u32 rc = 0;
1429         struct pci_func *new_slot = NULL;
1430         struct pci_bus *bus = ctrl->pci_bus;
1431         struct slot *p_slot;
1432         struct resource_lists res_lists;
1433
1434         hp_slot = func->device - ctrl->slot_device_offset;
1435         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1436             __func__, func->device, ctrl->slot_device_offset, hp_slot);
1437
1438         mutex_lock(&ctrl->crit_sect);
1439
1440         /* turn on board without attaching to the bus */
1441         enable_slot_power(ctrl, hp_slot);
1442
1443         set_SOGO(ctrl);
1444
1445         /* Wait for SOBS to be unset */
1446         wait_for_ctrl_irq (ctrl);
1447
1448         /* Change bits in slot power register to force another shift out
1449          * NOTE: this is to work around the timer bug
1450          */
1451         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1452         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1453         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1454
1455         set_SOGO(ctrl);
1456
1457         /* Wait for SOBS to be unset */
1458         wait_for_ctrl_irq (ctrl);
1459
1460         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1461         if (bus->cur_bus_speed != adapter_speed)
1462                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1463                         rc = WRONG_BUS_FREQUENCY;
1464
1465         /* turn off board without attaching to the bus */
1466         disable_slot_power (ctrl, hp_slot);
1467
1468         set_SOGO(ctrl);
1469
1470         /* Wait for SOBS to be unset */
1471         wait_for_ctrl_irq(ctrl);
1472
1473         mutex_unlock(&ctrl->crit_sect);
1474
1475         if (rc)
1476                 return rc;
1477
1478         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1479
1480         /* turn on board and blink green LED */
1481
1482         dbg("%s: before down\n", __func__);
1483         mutex_lock(&ctrl->crit_sect);
1484         dbg("%s: after down\n", __func__);
1485
1486         dbg("%s: before slot_enable\n", __func__);
1487         slot_enable (ctrl, hp_slot);
1488
1489         dbg("%s: before green_LED_blink\n", __func__);
1490         green_LED_blink (ctrl, hp_slot);
1491
1492         dbg("%s: before amber_LED_blink\n", __func__);
1493         amber_LED_off (ctrl, hp_slot);
1494
1495         dbg("%s: before set_SOGO\n", __func__);
1496         set_SOGO(ctrl);
1497
1498         /* Wait for SOBS to be unset */
1499         dbg("%s: before wait_for_ctrl_irq\n", __func__);
1500         wait_for_ctrl_irq (ctrl);
1501         dbg("%s: after wait_for_ctrl_irq\n", __func__);
1502
1503         dbg("%s: before up\n", __func__);
1504         mutex_unlock(&ctrl->crit_sect);
1505         dbg("%s: after up\n", __func__);
1506
1507         /* Wait for ~1 second because of hot plug spec */
1508         dbg("%s: before long_delay\n", __func__);
1509         long_delay(1*HZ);
1510         dbg("%s: after long_delay\n", __func__);
1511
1512         dbg("%s: func status = %x\n", __func__, func->status);
1513         /* Check for a power fault */
1514         if (func->status == 0xFF) {
1515                 /* power fault occurred, but it was benign */
1516                 temp_register = 0xFFFFFFFF;
1517                 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1518                 rc = POWER_FAILURE;
1519                 func->status = 0;
1520         } else {
1521                 /* Get vendor/device ID u32 */
1522                 ctrl->pci_bus->number = func->bus;
1523                 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1524                 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1525                 dbg("%s: temp_register is %x\n", __func__, temp_register);
1526
1527                 if (rc != 0) {
1528                         /* Something's wrong here */
1529                         temp_register = 0xFFFFFFFF;
1530                         dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1531                 }
1532                 /* Preset return code.  It will be changed later if things go okay. */
1533                 rc = NO_ADAPTER_PRESENT;
1534         }
1535
1536         /* All F's is an empty slot or an invalid board */
1537         if (temp_register != 0xFFFFFFFF) {
1538                 res_lists.io_head = ctrl->io_head;
1539                 res_lists.mem_head = ctrl->mem_head;
1540                 res_lists.p_mem_head = ctrl->p_mem_head;
1541                 res_lists.bus_head = ctrl->bus_head;
1542                 res_lists.irqs = NULL;
1543
1544                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1545
1546                 dbg("%s: back from configure_new_device\n", __func__);
1547                 ctrl->io_head = res_lists.io_head;
1548                 ctrl->mem_head = res_lists.mem_head;
1549                 ctrl->p_mem_head = res_lists.p_mem_head;
1550                 ctrl->bus_head = res_lists.bus_head;
1551
1552                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1553                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1554                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1555                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1556
1557                 if (rc) {
1558                         mutex_lock(&ctrl->crit_sect);
1559
1560                         amber_LED_on (ctrl, hp_slot);
1561                         green_LED_off (ctrl, hp_slot);
1562                         slot_disable (ctrl, hp_slot);
1563
1564                         set_SOGO(ctrl);
1565
1566                         /* Wait for SOBS to be unset */
1567                         wait_for_ctrl_irq (ctrl);
1568
1569                         mutex_unlock(&ctrl->crit_sect);
1570                         return rc;
1571                 } else {
1572                         cpqhp_save_slot_config(ctrl, func);
1573                 }
1574
1575
1576                 func->status = 0;
1577                 func->switch_save = 0x10;
1578                 func->is_a_board = 0x01;
1579
1580                 /* next, we will instantiate the linux pci_dev structures (with
1581                  * appropriate driver notification, if already present) */
1582                 dbg("%s: configure linux pci_dev structure\n", __func__);
1583                 index = 0;
1584                 do {
1585                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1586                         if (new_slot && !new_slot->pci_dev)
1587                                 cpqhp_configure_device(ctrl, new_slot);
1588                 } while (new_slot);
1589
1590                 mutex_lock(&ctrl->crit_sect);
1591
1592                 green_LED_on (ctrl, hp_slot);
1593
1594                 set_SOGO(ctrl);
1595
1596                 /* Wait for SOBS to be unset */
1597                 wait_for_ctrl_irq (ctrl);
1598
1599                 mutex_unlock(&ctrl->crit_sect);
1600         } else {
1601                 mutex_lock(&ctrl->crit_sect);
1602
1603                 amber_LED_on (ctrl, hp_slot);
1604                 green_LED_off (ctrl, hp_slot);
1605                 slot_disable (ctrl, hp_slot);
1606
1607                 set_SOGO(ctrl);
1608
1609                 /* Wait for SOBS to be unset */
1610                 wait_for_ctrl_irq (ctrl);
1611
1612                 mutex_unlock(&ctrl->crit_sect);
1613
1614                 return rc;
1615         }
1616         return 0;
1617 }
1618
1619
1620 /**
1621  * remove_board - Turns off slot and LEDs
1622  * @func: PCI device/function info
1623  * @replace_flag: whether replacing or adding a new device
1624  * @ctrl: target controller
1625  */
1626 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1627 {
1628         int index;
1629         u8 skip = 0;
1630         u8 device;
1631         u8 hp_slot;
1632         u8 temp_byte;
1633         u32 rc;
1634         struct resource_lists res_lists;
1635         struct pci_func *temp_func;
1636
1637         if (cpqhp_unconfigure_device(func))
1638                 return 1;
1639
1640         device = func->device;
1641
1642         hp_slot = func->device - ctrl->slot_device_offset;
1643         dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1644
1645         /* When we get here, it is safe to change base address registers.
1646          * We will attempt to save the base address register lengths */
1647         if (replace_flag || !ctrl->add_support)
1648                 rc = cpqhp_save_base_addr_length(ctrl, func);
1649         else if (!func->bus_head && !func->mem_head &&
1650                  !func->p_mem_head && !func->io_head) {
1651                 /* Here we check to see if we've saved any of the board's
1652                  * resources already.  If so, we'll skip the attempt to
1653                  * determine what's being used. */
1654                 index = 0;
1655                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656                 while (temp_func) {
1657                         if (temp_func->bus_head || temp_func->mem_head
1658                             || temp_func->p_mem_head || temp_func->io_head) {
1659                                 skip = 1;
1660                                 break;
1661                         }
1662                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1663                 }
1664
1665                 if (!skip)
1666                         rc = cpqhp_save_used_resources(ctrl, func);
1667         }
1668         /* Change status to shutdown */
1669         if (func->is_a_board)
1670                 func->status = 0x01;
1671         func->configured = 0;
1672
1673         mutex_lock(&ctrl->crit_sect);
1674
1675         green_LED_off (ctrl, hp_slot);
1676         slot_disable (ctrl, hp_slot);
1677
1678         set_SOGO(ctrl);
1679
1680         /* turn off SERR for slot */
1681         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682         temp_byte &= ~(0x01 << hp_slot);
1683         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1684
1685         /* Wait for SOBS to be unset */
1686         wait_for_ctrl_irq (ctrl);
1687
1688         mutex_unlock(&ctrl->crit_sect);
1689
1690         if (!replace_flag && ctrl->add_support) {
1691                 while (func) {
1692                         res_lists.io_head = ctrl->io_head;
1693                         res_lists.mem_head = ctrl->mem_head;
1694                         res_lists.p_mem_head = ctrl->p_mem_head;
1695                         res_lists.bus_head = ctrl->bus_head;
1696
1697                         cpqhp_return_board_resources(func, &res_lists);
1698
1699                         ctrl->io_head = res_lists.io_head;
1700                         ctrl->mem_head = res_lists.mem_head;
1701                         ctrl->p_mem_head = res_lists.p_mem_head;
1702                         ctrl->bus_head = res_lists.bus_head;
1703
1704                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1708
1709                         if (is_bridge(func)) {
1710                                 bridge_slot_remove(func);
1711                         } else
1712                                 slot_remove(func);
1713
1714                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1715                 }
1716
1717                 /* Setup slot structure with entry for empty slot */
1718                 func = cpqhp_slot_create(ctrl->bus);
1719
1720                 if (func == NULL)
1721                         return 1;
1722
1723                 func->bus = ctrl->bus;
1724                 func->device = device;
1725                 func->function = 0;
1726                 func->configured = 0;
1727                 func->switch_save = 0x10;
1728                 func->is_a_board = 0;
1729                 func->p_task_event = NULL;
1730         }
1731
1732         return 0;
1733 }
1734
1735 static void pushbutton_helper_thread(unsigned long data)
1736 {
1737         pushbutton_pending = data;
1738         wake_up_process(cpqhp_event_thread);
1739 }
1740
1741
1742 /* this is the main worker thread */
1743 static int event_thread(void *data)
1744 {
1745         struct controller *ctrl;
1746
1747         while (1) {
1748                 dbg("!!!!event_thread sleeping\n");
1749                 set_current_state(TASK_INTERRUPTIBLE);
1750                 schedule();
1751
1752                 if (kthread_should_stop())
1753                         break;
1754                 /* Do stuff here */
1755                 if (pushbutton_pending)
1756                         cpqhp_pushbutton_thread(pushbutton_pending);
1757                 else
1758                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1759                                 interrupt_event_handler(ctrl);
1760         }
1761         dbg("event_thread signals exit\n");
1762         return 0;
1763 }
1764
1765 int cpqhp_event_start_thread(void)
1766 {
1767         cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1768         if (IS_ERR(cpqhp_event_thread)) {
1769                 err ("Can't start up our event thread\n");
1770                 return PTR_ERR(cpqhp_event_thread);
1771         }
1772
1773         return 0;
1774 }
1775
1776
1777 void cpqhp_event_stop_thread(void)
1778 {
1779         kthread_stop(cpqhp_event_thread);
1780 }
1781
1782
1783 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1784 {
1785         struct hotplug_slot_info *info;
1786         int result;
1787
1788         info = kmalloc(sizeof(*info), GFP_KERNEL);
1789         if (!info)
1790                 return -ENOMEM;
1791
1792         info->power_status = get_slot_enabled(ctrl, slot);
1793         info->attention_status = cpq_get_attention_status(ctrl, slot);
1794         info->latch_status = cpq_get_latch_status(ctrl, slot);
1795         info->adapter_status = get_presence_status(ctrl, slot);
1796         result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1797         kfree (info);
1798         return result;
1799 }
1800
1801 static void interrupt_event_handler(struct controller *ctrl)
1802 {
1803         int loop = 0;
1804         int change = 1;
1805         struct pci_func *func;
1806         u8 hp_slot;
1807         struct slot *p_slot;
1808
1809         while (change) {
1810                 change = 0;
1811
1812                 for (loop = 0; loop < 10; loop++) {
1813                         /* dbg("loop %d\n", loop); */
1814                         if (ctrl->event_queue[loop].event_type != 0) {
1815                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1816
1817                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1818                                 if (!func)
1819                                         return;
1820
1821                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1822                                 if (!p_slot)
1823                                         return;
1824
1825                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1826                                     hp_slot, func, p_slot);
1827
1828                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1829                                         dbg("button pressed\n");
1830                                 } else if (ctrl->event_queue[loop].event_type ==
1831                                            INT_BUTTON_CANCEL) {
1832                                         dbg("button cancel\n");
1833                                         del_timer(&p_slot->task_event);
1834
1835                                         mutex_lock(&ctrl->crit_sect);
1836
1837                                         if (p_slot->state == BLINKINGOFF_STATE) {
1838                                                 /* slot is on */
1839                                                 dbg("turn on green LED\n");
1840                                                 green_LED_on (ctrl, hp_slot);
1841                                         } else if (p_slot->state == BLINKINGON_STATE) {
1842                                                 /* slot is off */
1843                                                 dbg("turn off green LED\n");
1844                                                 green_LED_off (ctrl, hp_slot);
1845                                         }
1846
1847                                         info(msg_button_cancel, p_slot->number);
1848
1849                                         p_slot->state = STATIC_STATE;
1850
1851                                         amber_LED_off (ctrl, hp_slot);
1852
1853                                         set_SOGO(ctrl);
1854
1855                                         /* Wait for SOBS to be unset */
1856                                         wait_for_ctrl_irq (ctrl);
1857
1858                                         mutex_unlock(&ctrl->crit_sect);
1859                                 }
1860                                 /*** button Released (No action on press...) */
1861                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1862                                         dbg("button release\n");
1863
1864                                         if (is_slot_enabled (ctrl, hp_slot)) {
1865                                                 dbg("slot is on\n");
1866                                                 p_slot->state = BLINKINGOFF_STATE;
1867                                                 info(msg_button_off, p_slot->number);
1868                                         } else {
1869                                                 dbg("slot is off\n");
1870                                                 p_slot->state = BLINKINGON_STATE;
1871                                                 info(msg_button_on, p_slot->number);
1872                                         }
1873                                         mutex_lock(&ctrl->crit_sect);
1874
1875                                         dbg("blink green LED and turn off amber\n");
1876
1877                                         amber_LED_off (ctrl, hp_slot);
1878                                         green_LED_blink (ctrl, hp_slot);
1879
1880                                         set_SOGO(ctrl);
1881
1882                                         /* Wait for SOBS to be unset */
1883                                         wait_for_ctrl_irq (ctrl);
1884
1885                                         mutex_unlock(&ctrl->crit_sect);
1886                                         init_timer(&p_slot->task_event);
1887                                         p_slot->hp_slot = hp_slot;
1888                                         p_slot->ctrl = ctrl;
1889 /*                                      p_slot->physical_slot = physical_slot; */
1890                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1891                                         p_slot->task_event.function = pushbutton_helper_thread;
1892                                         p_slot->task_event.data = (u32) p_slot;
1893
1894                                         dbg("add_timer p_slot = %p\n", p_slot);
1895                                         add_timer(&p_slot->task_event);
1896                                 }
1897                                 /***********POWER FAULT */
1898                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1899                                         dbg("power fault\n");
1900                                 } else {
1901                                         /* refresh notification */
1902                                         update_slot_info(ctrl, p_slot);
1903                                 }
1904
1905                                 ctrl->event_queue[loop].event_type = 0;
1906
1907                                 change = 1;
1908                         }
1909                 }               /* End of FOR loop */
1910         }
1911
1912         return;
1913 }
1914
1915
1916 /**
1917  * cpqhp_pushbutton_thread - handle pushbutton events
1918  * @slot: target slot (struct)
1919  *
1920  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1921  * Handles all pending events and exits.
1922  */
1923 void cpqhp_pushbutton_thread(unsigned long slot)
1924 {
1925         u8 hp_slot;
1926         u8 device;
1927         struct pci_func *func;
1928         struct slot *p_slot = (struct slot *) slot;
1929         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1930
1931         pushbutton_pending = 0;
1932         hp_slot = p_slot->hp_slot;
1933
1934         device = p_slot->device;
1935
1936         if (is_slot_enabled(ctrl, hp_slot)) {
1937                 p_slot->state = POWEROFF_STATE;
1938                 /* power Down board */
1939                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1940                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1941                 if (!func) {
1942                         dbg("Error! func NULL in %s\n", __func__);
1943                         return ;
1944                 }
1945
1946                 if (cpqhp_process_SS(ctrl, func) != 0) {
1947                         amber_LED_on(ctrl, hp_slot);
1948                         green_LED_on(ctrl, hp_slot);
1949
1950                         set_SOGO(ctrl);
1951
1952                         /* Wait for SOBS to be unset */
1953                         wait_for_ctrl_irq(ctrl);
1954                 }
1955
1956                 p_slot->state = STATIC_STATE;
1957         } else {
1958                 p_slot->state = POWERON_STATE;
1959                 /* slot is off */
1960
1961                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1962                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1963                 if (!func) {
1964                         dbg("Error! func NULL in %s\n", __func__);
1965                         return ;
1966                 }
1967
1968                 if (ctrl != NULL) {
1969                         if (cpqhp_process_SI(ctrl, func) != 0) {
1970                                 amber_LED_on(ctrl, hp_slot);
1971                                 green_LED_off(ctrl, hp_slot);
1972
1973                                 set_SOGO(ctrl);
1974
1975                                 /* Wait for SOBS to be unset */
1976                                 wait_for_ctrl_irq (ctrl);
1977                         }
1978                 }
1979
1980                 p_slot->state = STATIC_STATE;
1981         }
1982
1983         return;
1984 }
1985
1986
1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1988 {
1989         u8 device, hp_slot;
1990         u16 temp_word;
1991         u32 tempdword;
1992         int rc;
1993         struct slot *p_slot;
1994         int physical_slot = 0;
1995
1996         tempdword = 0;
1997
1998         device = func->device;
1999         hp_slot = device - ctrl->slot_device_offset;
2000         p_slot = cpqhp_find_slot(ctrl, device);
2001         if (p_slot)
2002                 physical_slot = p_slot->number;
2003
2004         /* Check to see if the interlock is closed */
2005         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2006
2007         if (tempdword & (0x01 << hp_slot))
2008                 return 1;
2009
2010         if (func->is_a_board) {
2011                 rc = board_replaced(func, ctrl);
2012         } else {
2013                 /* add board */
2014                 slot_remove(func);
2015
2016                 func = cpqhp_slot_create(ctrl->bus);
2017                 if (func == NULL)
2018                         return 1;
2019
2020                 func->bus = ctrl->bus;
2021                 func->device = device;
2022                 func->function = 0;
2023                 func->configured = 0;
2024                 func->is_a_board = 1;
2025
2026                 /* We have to save the presence info for these slots */
2027                 temp_word = ctrl->ctrl_int_comp >> 16;
2028                 func->presence_save = (temp_word >> hp_slot) & 0x01;
2029                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030
2031                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032                         func->switch_save = 0;
2033                 } else {
2034                         func->switch_save = 0x10;
2035                 }
2036
2037                 rc = board_added(func, ctrl);
2038                 if (rc) {
2039                         if (is_bridge(func)) {
2040                                 bridge_slot_remove(func);
2041                         } else
2042                                 slot_remove(func);
2043
2044                         /* Setup slot structure with entry for empty slot */
2045                         func = cpqhp_slot_create(ctrl->bus);
2046
2047                         if (func == NULL)
2048                                 return 1;
2049
2050                         func->bus = ctrl->bus;
2051                         func->device = device;
2052                         func->function = 0;
2053                         func->configured = 0;
2054                         func->is_a_board = 0;
2055
2056                         /* We have to save the presence info for these slots */
2057                         temp_word = ctrl->ctrl_int_comp >> 16;
2058                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2059                         func->presence_save |=
2060                         (temp_word >> (hp_slot + 7)) & 0x02;
2061
2062                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063                                 func->switch_save = 0;
2064                         } else {
2065                                 func->switch_save = 0x10;
2066                         }
2067                 }
2068         }
2069
2070         if (rc)
2071                 dbg("%s: rc = %d\n", __func__, rc);
2072
2073         if (p_slot)
2074                 update_slot_info(ctrl, p_slot);
2075
2076         return rc;
2077 }
2078
2079
2080 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2081 {
2082         u8 device, class_code, header_type, BCR;
2083         u8 index = 0;
2084         u8 replace_flag;
2085         u32 rc = 0;
2086         unsigned int devfn;
2087         struct slot *p_slot;
2088         struct pci_bus *pci_bus = ctrl->pci_bus;
2089         int physical_slot=0;
2090
2091         device = func->device;
2092         func = cpqhp_slot_find(ctrl->bus, device, index++);
2093         p_slot = cpqhp_find_slot(ctrl, device);
2094         if (p_slot)
2095                 physical_slot = p_slot->number;
2096
2097         /* Make sure there are no video controllers here */
2098         while (func && !rc) {
2099                 pci_bus->number = func->bus;
2100                 devfn = PCI_DEVFN(func->device, func->function);
2101
2102                 /* Check the Class Code */
2103                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2104                 if (rc)
2105                         return rc;
2106
2107                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2108                         /* Display/Video adapter (not supported) */
2109                         rc = REMOVE_NOT_SUPPORTED;
2110                 } else {
2111                         /* See if it's a bridge */
2112                         rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2113                         if (rc)
2114                                 return rc;
2115
2116                         /* If it's a bridge, check the VGA Enable bit */
2117                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2118                                 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2119                                 if (rc)
2120                                         return rc;
2121
2122                                 /* If the VGA Enable bit is set, remove isn't
2123                                  * supported */
2124                                 if (BCR & PCI_BRIDGE_CTL_VGA)
2125                                         rc = REMOVE_NOT_SUPPORTED;
2126                         }
2127                 }
2128
2129                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2130         }
2131
2132         func = cpqhp_slot_find(ctrl->bus, device, 0);
2133         if ((func != NULL) && !rc) {
2134                 /* FIXME: Replace flag should be passed into process_SS */
2135                 replace_flag = !(ctrl->add_support);
2136                 rc = remove_board(func, replace_flag, ctrl);
2137         } else if (!rc) {
2138                 rc = 1;
2139         }
2140
2141         if (p_slot)
2142                 update_slot_info(ctrl, p_slot);
2143
2144         return rc;
2145 }
2146
2147 /**
2148  * switch_leds - switch the leds, go from one site to the other.
2149  * @ctrl: controller to use
2150  * @num_of_slots: number of slots to use
2151  * @work_LED: LED control value
2152  * @direction: 1 to start from the left side, 0 to start right.
2153  */
2154 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2155                         u32 *work_LED, const int direction)
2156 {
2157         int loop;
2158
2159         for (loop = 0; loop < num_of_slots; loop++) {
2160                 if (direction)
2161                         *work_LED = *work_LED >> 1;
2162                 else
2163                         *work_LED = *work_LED << 1;
2164                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2165
2166                 set_SOGO(ctrl);
2167
2168                 /* Wait for SOGO interrupt */
2169                 wait_for_ctrl_irq(ctrl);
2170
2171                 /* Get ready for next iteration */
2172                 long_delay((2*HZ)/10);
2173         }
2174 }
2175
2176 /**
2177  * cpqhp_hardware_test - runs hardware tests
2178  * @ctrl: target controller
2179  * @test_num: the number written to the "test" file in sysfs.
2180  *
2181  * For hot plug ctrl folks to play with.
2182  */
2183 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2184 {
2185         u32 save_LED;
2186         u32 work_LED;
2187         int loop;
2188         int num_of_slots;
2189
2190         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2191
2192         switch (test_num) {
2193         case 1:
2194                 /* Do stuff here! */
2195
2196                 /* Do that funky LED thing */
2197                 /* so we can restore them later */
2198                 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2199                 work_LED = 0x01010101;
2200                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204
2205                 work_LED = 0x01010000;
2206                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2207                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2209                 work_LED = 0x00000101;
2210                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211                 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212                 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2213
2214                 work_LED = 0x01010000;
2215                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216                 for (loop = 0; loop < num_of_slots; loop++) {
2217                         set_SOGO(ctrl);
2218
2219                         /* Wait for SOGO interrupt */
2220                         wait_for_ctrl_irq (ctrl);
2221
2222                         /* Get ready for next iteration */
2223                         long_delay((3*HZ)/10);
2224                         work_LED = work_LED >> 16;
2225                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2226
2227                         set_SOGO(ctrl);
2228
2229                         /* Wait for SOGO interrupt */
2230                         wait_for_ctrl_irq (ctrl);
2231
2232                         /* Get ready for next iteration */
2233                         long_delay((3*HZ)/10);
2234                         work_LED = work_LED << 16;
2235                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236                         work_LED = work_LED << 1;
2237                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238                 }
2239
2240                 /* put it back the way it was */
2241                 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2242
2243                 set_SOGO(ctrl);
2244
2245                 /* Wait for SOBS to be unset */
2246                 wait_for_ctrl_irq (ctrl);
2247                 break;
2248         case 2:
2249                 /* Do other stuff here! */
2250                 break;
2251         case 3:
2252                 /* and more... */
2253                 break;
2254         }
2255         return 0;
2256 }
2257
2258
2259 /**
2260  * configure_new_device - Configures the PCI header information of one board.
2261  * @ctrl: pointer to controller structure
2262  * @func: pointer to function structure
2263  * @behind_bridge: 1 if this is a recursive call, 0 if not
2264  * @resources: pointer to set of resource lists
2265  *
2266  * Returns 0 if success.
2267  */
2268 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2269                                  u8 behind_bridge, struct resource_lists  *resources)
2270 {
2271         u8 temp_byte, function, max_functions, stop_it;
2272         int rc;
2273         u32 ID;
2274         struct pci_func *new_slot;
2275         int index;
2276
2277         new_slot = func;
2278
2279         dbg("%s\n", __func__);
2280         /* Check for Multi-function device */
2281         ctrl->pci_bus->number = func->bus;
2282         rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2283         if (rc) {
2284                 dbg("%s: rc = %d\n", __func__, rc);
2285                 return rc;
2286         }
2287
2288         if (temp_byte & 0x80)   /* Multi-function device */
2289                 max_functions = 8;
2290         else
2291                 max_functions = 1;
2292
2293         function = 0;
2294
2295         do {
2296                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2297
2298                 if (rc) {
2299                         dbg("configure_new_function failed %d\n",rc);
2300                         index = 0;
2301
2302                         while (new_slot) {
2303                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2304
2305                                 if (new_slot)
2306                                         cpqhp_return_board_resources(new_slot, resources);
2307                         }
2308
2309                         return rc;
2310                 }
2311
2312                 function++;
2313
2314                 stop_it = 0;
2315
2316                 /* The following loop skips to the next present function
2317                  * and creates a board structure */
2318
2319                 while ((function < max_functions) && (!stop_it)) {
2320                         pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2321
2322                         if (ID == 0xFFFFFFFF) {
2323                                 function++;
2324                         } else {
2325                                 /* Setup slot structure. */
2326                                 new_slot = cpqhp_slot_create(func->bus);
2327
2328                                 if (new_slot == NULL)
2329                                         return 1;
2330
2331                                 new_slot->bus = func->bus;
2332                                 new_slot->device = func->device;
2333                                 new_slot->function = function;
2334                                 new_slot->is_a_board = 1;
2335                                 new_slot->status = 0;
2336
2337                                 stop_it++;
2338                         }
2339                 }
2340
2341         } while (function < max_functions);
2342         dbg("returning from configure_new_device\n");
2343
2344         return 0;
2345 }
2346
2347
2348 /*
2349  * Configuration logic that involves the hotplug data structures and
2350  * their bookkeeping
2351  */
2352
2353
2354 /**
2355  * configure_new_function - Configures the PCI header information of one device
2356  * @ctrl: pointer to controller structure
2357  * @func: pointer to function structure
2358  * @behind_bridge: 1 if this is a recursive call, 0 if not
2359  * @resources: pointer to set of resource lists
2360  *
2361  * Calls itself recursively for bridged devices.
2362  * Returns 0 if success.
2363  */
2364 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2365                                    u8 behind_bridge,
2366                                    struct resource_lists *resources)
2367 {
2368         int cloop;
2369         u8 IRQ = 0;
2370         u8 temp_byte;
2371         u8 device;
2372         u8 class_code;
2373         u16 command;
2374         u16 temp_word;
2375         u32 temp_dword;
2376         u32 rc;
2377         u32 temp_register;
2378         u32 base;
2379         u32 ID;
2380         unsigned int devfn;
2381         struct pci_resource *mem_node;
2382         struct pci_resource *p_mem_node;
2383         struct pci_resource *io_node;
2384         struct pci_resource *bus_node;
2385         struct pci_resource *hold_mem_node;
2386         struct pci_resource *hold_p_mem_node;
2387         struct pci_resource *hold_IO_node;
2388         struct pci_resource *hold_bus_node;
2389         struct irq_mapping irqs;
2390         struct pci_func *new_slot;
2391         struct pci_bus *pci_bus;
2392         struct resource_lists temp_resources;
2393
2394         pci_bus = ctrl->pci_bus;
2395         pci_bus->number = func->bus;
2396         devfn = PCI_DEVFN(func->device, func->function);
2397
2398         /* Check for Bridge */
2399         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2400         if (rc)
2401                 return rc;
2402
2403         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2404                 /* set Primary bus */
2405                 dbg("set Primary bus = %d\n", func->bus);
2406                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2407                 if (rc)
2408                         return rc;
2409
2410                 /* find range of buses to use */
2411                 dbg("find ranges of buses to use\n");
2412                 bus_node = get_max_resource(&(resources->bus_head), 1);
2413
2414                 /* If we don't have any buses to allocate, we can't continue */
2415                 if (!bus_node)
2416                         return -ENOMEM;
2417
2418                 /* set Secondary bus */
2419                 temp_byte = bus_node->base;
2420                 dbg("set Secondary bus = %d\n", bus_node->base);
2421                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2422                 if (rc)
2423                         return rc;
2424
2425                 /* set subordinate bus */
2426                 temp_byte = bus_node->base + bus_node->length - 1;
2427                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2428                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2429                 if (rc)
2430                         return rc;
2431
2432                 /* set subordinate Latency Timer and base Latency Timer */
2433                 temp_byte = 0x40;
2434                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2435                 if (rc)
2436                         return rc;
2437                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2438                 if (rc)
2439                         return rc;
2440
2441                 /* set Cache Line size */
2442                 temp_byte = 0x08;
2443                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2444                 if (rc)
2445                         return rc;
2446
2447                 /* Setup the IO, memory, and prefetchable windows */
2448                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2449                 if (!io_node)
2450                         return -ENOMEM;
2451                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2452                 if (!mem_node)
2453                         return -ENOMEM;
2454                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2455                 if (!p_mem_node)
2456                         return -ENOMEM;
2457                 dbg("Setup the IO, memory, and prefetchable windows\n");
2458                 dbg("io_node\n");
2459                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2460                                         io_node->length, io_node->next);
2461                 dbg("mem_node\n");
2462                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2463                                         mem_node->length, mem_node->next);
2464                 dbg("p_mem_node\n");
2465                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2466                                         p_mem_node->length, p_mem_node->next);
2467
2468                 /* set up the IRQ info */
2469                 if (!resources->irqs) {
2470                         irqs.barber_pole = 0;
2471                         irqs.interrupt[0] = 0;
2472                         irqs.interrupt[1] = 0;
2473                         irqs.interrupt[2] = 0;
2474                         irqs.interrupt[3] = 0;
2475                         irqs.valid_INT = 0;
2476                 } else {
2477                         irqs.barber_pole = resources->irqs->barber_pole;
2478                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2479                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2480                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2481                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2482                         irqs.valid_INT = resources->irqs->valid_INT;
2483                 }
2484
2485                 /* set up resource lists that are now aligned on top and bottom
2486                  * for anything behind the bridge. */
2487                 temp_resources.bus_head = bus_node;
2488                 temp_resources.io_head = io_node;
2489                 temp_resources.mem_head = mem_node;
2490                 temp_resources.p_mem_head = p_mem_node;
2491                 temp_resources.irqs = &irqs;
2492
2493                 /* Make copies of the nodes we are going to pass down so that
2494                  * if there is a problem,we can just use these to free resources
2495                  */
2496                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2497                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2498                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2499                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2500
2501                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2502                         kfree(hold_bus_node);
2503                         kfree(hold_IO_node);
2504                         kfree(hold_mem_node);
2505                         kfree(hold_p_mem_node);
2506
2507                         return 1;
2508                 }
2509
2510                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2511
2512                 bus_node->base += 1;
2513                 bus_node->length -= 1;
2514                 bus_node->next = NULL;
2515
2516                 /* If we have IO resources copy them and fill in the bridge's
2517                  * IO range registers */
2518                 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2519                 io_node->next = NULL;
2520
2521                 /* set IO base and Limit registers */
2522                 temp_byte = io_node->base >> 8;
2523                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2524
2525                 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2526                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2527
2528                 /* Copy the memory resources and fill in the bridge's memory
2529                  * range registers.
2530                  */
2531                 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2532                 mem_node->next = NULL;
2533
2534                 /* set Mem base and Limit registers */
2535                 temp_word = mem_node->base >> 16;
2536                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2537
2538                 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2539                 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2540
2541                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2542                 p_mem_node->next = NULL;
2543
2544                 /* set Pre Mem base and Limit registers */
2545                 temp_word = p_mem_node->base >> 16;
2546                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2547
2548                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2549                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2550
2551                 /* Adjust this to compensate for extra adjustment in first loop
2552                  */
2553                 irqs.barber_pole--;
2554
2555                 rc = 0;
2556
2557                 /* Here we actually find the devices and configure them */
2558                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2559                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2560
2561                         ID = 0xFFFFFFFF;
2562                         pci_bus->number = hold_bus_node->base;
2563                         pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2564                         pci_bus->number = func->bus;
2565
2566                         if (ID != 0xFFFFFFFF) {   /*  device present */
2567                                 /* Setup slot structure. */
2568                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2569
2570                                 if (new_slot == NULL) {
2571                                         rc = -ENOMEM;
2572                                         continue;
2573                                 }
2574
2575                                 new_slot->bus = hold_bus_node->base;
2576                                 new_slot->device = device;
2577                                 new_slot->function = 0;
2578                                 new_slot->is_a_board = 1;
2579                                 new_slot->status = 0;
2580
2581                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2582                                 dbg("configure_new_device rc=0x%x\n",rc);
2583                         }       /* End of IF (device in slot?) */
2584                 }               /* End of FOR loop */
2585
2586                 if (rc)
2587                         goto free_and_out;
2588                 /* save the interrupt routing information */
2589                 if (resources->irqs) {
2590                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2591                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2592                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2593                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2594                         resources->irqs->valid_INT = irqs.valid_INT;
2595                 } else if (!behind_bridge) {
2596                         /* We need to hook up the interrupts here */
2597                         for (cloop = 0; cloop < 4; cloop++) {
2598                                 if (irqs.valid_INT & (0x01 << cloop)) {
2599                                         rc = cpqhp_set_irq(func->bus, func->device,
2600                                                            cloop + 1, irqs.interrupt[cloop]);
2601                                         if (rc)
2602                                                 goto free_and_out;
2603                                 }
2604                         }       /* end of for loop */
2605                 }
2606                 /* Return unused bus resources
2607                  * First use the temporary node to store information for
2608                  * the board */
2609                 if (bus_node && temp_resources.bus_head) {
2610                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2611
2612                         hold_bus_node->next = func->bus_head;
2613                         func->bus_head = hold_bus_node;
2614
2615                         temp_byte = temp_resources.bus_head->base - 1;
2616
2617                         /* set subordinate bus */
2618                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2619
2620                         if (temp_resources.bus_head->length == 0) {
2621                                 kfree(temp_resources.bus_head);
2622                                 temp_resources.bus_head = NULL;
2623                         } else {
2624                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2625                         }
2626                 }
2627
2628                 /* If we have IO space available and there is some left,
2629                  * return the unused portion */
2630                 if (hold_IO_node && temp_resources.io_head) {
2631                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2632                                                                &hold_IO_node, 0x1000);
2633
2634                         /* Check if we were able to split something off */
2635                         if (io_node) {
2636                                 hold_IO_node->base = io_node->base + io_node->length;
2637
2638                                 temp_byte = (hold_IO_node->base) >> 8;
2639                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2640
2641                                 return_resource(&(resources->io_head), io_node);
2642                         }
2643
2644                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2645
2646                         /* Check if we were able to split something off */
2647                         if (io_node) {
2648                                 /* First use the temporary node to store
2649                                  * information for the board */
2650                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2651
2652                                 /* If we used any, add it to the board's list */
2653                                 if (hold_IO_node->length) {
2654                                         hold_IO_node->next = func->io_head;
2655                                         func->io_head = hold_IO_node;
2656
2657                                         temp_byte = (io_node->base - 1) >> 8;
2658                                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2659
2660                                         return_resource(&(resources->io_head), io_node);
2661                                 } else {
2662                                         /* it doesn't need any IO */
2663                                         temp_word = 0x0000;
2664                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2665
2666                                         return_resource(&(resources->io_head), io_node);
2667                                         kfree(hold_IO_node);
2668                                 }
2669                         } else {
2670                                 /* it used most of the range */
2671                                 hold_IO_node->next = func->io_head;
2672                                 func->io_head = hold_IO_node;
2673                         }
2674                 } else if (hold_IO_node) {
2675                         /* it used the whole range */
2676                         hold_IO_node->next = func->io_head;
2677                         func->io_head = hold_IO_node;
2678                 }
2679                 /* If we have memory space available and there is some left,
2680                  * return the unused portion */
2681                 if (hold_mem_node && temp_resources.mem_head) {
2682                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2683                                                                 &hold_mem_node, 0x100000);
2684
2685                         /* Check if we were able to split something off */
2686                         if (mem_node) {
2687                                 hold_mem_node->base = mem_node->base + mem_node->length;
2688
2689                                 temp_word = (hold_mem_node->base) >> 16;
2690                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2691
2692                                 return_resource(&(resources->mem_head), mem_node);
2693                         }
2694
2695                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2696
2697                         /* Check if we were able to split something off */
2698                         if (mem_node) {
2699                                 /* First use the temporary node to store
2700                                  * information for the board */
2701                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2702
2703                                 if (hold_mem_node->length) {
2704                                         hold_mem_node->next = func->mem_head;
2705                                         func->mem_head = hold_mem_node;
2706
2707                                         /* configure end address */
2708                                         temp_word = (mem_node->base - 1) >> 16;
2709                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2710
2711                                         /* Return unused resources to the pool */
2712                                         return_resource(&(resources->mem_head), mem_node);
2713                                 } else {
2714                                         /* it doesn't need any Mem */
2715                                         temp_word = 0x0000;
2716                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
2718                                         return_resource(&(resources->mem_head), mem_node);
2719                                         kfree(hold_mem_node);
2720                                 }
2721                         } else {
2722                                 /* it used most of the range */
2723                                 hold_mem_node->next = func->mem_head;
2724                                 func->mem_head = hold_mem_node;
2725                         }
2726                 } else if (hold_mem_node) {
2727                         /* it used the whole range */
2728                         hold_mem_node->next = func->mem_head;
2729                         func->mem_head = hold_mem_node;
2730                 }
2731                 /* If we have prefetchable memory space available and there
2732                  * is some left at the end, return the unused portion */
2733                 if (temp_resources.p_mem_head) {
2734                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2735                                                                   &hold_p_mem_node, 0x100000);
2736
2737                         /* Check if we were able to split something off */
2738                         if (p_mem_node) {
2739                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2740
2741                                 temp_word = (hold_p_mem_node->base) >> 16;
2742                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2743
2744                                 return_resource(&(resources->p_mem_head), p_mem_node);
2745                         }
2746
2747                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2748
2749                         /* Check if we were able to split something off */
2750                         if (p_mem_node) {
2751                                 /* First use the temporary node to store
2752                                  * information for the board */
2753                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2754
2755                                 /* If we used any, add it to the board's list */
2756                                 if (hold_p_mem_node->length) {
2757                                         hold_p_mem_node->next = func->p_mem_head;
2758                                         func->p_mem_head = hold_p_mem_node;
2759
2760                                         temp_word = (p_mem_node->base - 1) >> 16;
2761                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2762
2763                                         return_resource(&(resources->p_mem_head), p_mem_node);
2764                                 } else {
2765                                         /* it doesn't need any PMem */
2766                                         temp_word = 0x0000;
2767                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2768
2769                                         return_resource(&(resources->p_mem_head), p_mem_node);
2770                                         kfree(hold_p_mem_node);
2771                                 }
2772                         } else {
2773                                 /* it used the most of the range */
2774                                 hold_p_mem_node->next = func->p_mem_head;
2775                                 func->p_mem_head = hold_p_mem_node;
2776                         }
2777                 } else if (hold_p_mem_node) {
2778                         /* it used the whole range */
2779                         hold_p_mem_node->next = func->p_mem_head;
2780                         func->p_mem_head = hold_p_mem_node;
2781                 }
2782                 /* We should be configuring an IRQ and the bridge's base address
2783                  * registers if it needs them.  Although we have never seen such
2784                  * a device */
2785
2786                 /* enable card */
2787                 command = 0x0157;       /* = PCI_COMMAND_IO |
2788                                          *   PCI_COMMAND_MEMORY |
2789                                          *   PCI_COMMAND_MASTER |
2790                                          *   PCI_COMMAND_INVALIDATE |
2791                                          *   PCI_COMMAND_PARITY |
2792                                          *   PCI_COMMAND_SERR */
2793                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2794
2795                 /* set Bridge Control Register */
2796                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2797                                          *   PCI_BRIDGE_CTL_SERR |
2798                                          *   PCI_BRIDGE_CTL_NO_ISA */
2799                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2800         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2801                 /* Standard device */
2802                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2803
2804                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2805                         /* Display (video) adapter (not supported) */
2806                         return DEVICE_TYPE_NOT_SUPPORTED;
2807                 }
2808                 /* Figure out IO and memory needs */
2809                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2810                         temp_register = 0xFFFFFFFF;
2811
2812                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2813                         rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2814
2815                         rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2816                         dbg("CND: base = 0x%x\n", temp_register);
2817
2818                         if (temp_register) {      /* If this register is implemented */
2819                                 if ((temp_register & 0x03L) == 0x01) {
2820                                         /* Map IO */
2821
2822                                         /* set base = amount of IO space */
2823                                         base = temp_register & 0xFFFFFFFC;
2824                                         base = ~base + 1;
2825
2826                                         dbg("CND:      length = 0x%x\n", base);
2827                                         io_node = get_io_resource(&(resources->io_head), base);
2828                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2829                                             io_node->base, io_node->length, io_node->next);
2830                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2831
2832                                         /* allocate the resource to the board */
2833                                         if (io_node) {
2834                                                 base = io_node->base;
2835
2836                                                 io_node->next = func->io_head;
2837                                                 func->io_head = io_node;
2838                                         } else
2839                                                 return -ENOMEM;
2840                                 } else if ((temp_register & 0x0BL) == 0x08) {
2841                                         /* Map prefetchable memory */
2842                                         base = temp_register & 0xFFFFFFF0;
2843                                         base = ~base + 1;
2844
2845                                         dbg("CND:      length = 0x%x\n", base);
2846                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2847
2848                                         /* allocate the resource to the board */
2849                                         if (p_mem_node) {
2850                                                 base = p_mem_node->base;
2851
2852                                                 p_mem_node->next = func->p_mem_head;
2853                                                 func->p_mem_head = p_mem_node;
2854                                         } else
2855                                                 return -ENOMEM;
2856                                 } else if ((temp_register & 0x0BL) == 0x00) {
2857                                         /* Map memory */
2858                                         base = temp_register & 0xFFFFFFF0;
2859                                         base = ~base + 1;
2860
2861                                         dbg("CND:      length = 0x%x\n", base);
2862                                         mem_node = get_resource(&(resources->mem_head), base);
2863
2864                                         /* allocate the resource to the board */
2865                                         if (mem_node) {
2866                                                 base = mem_node->base;
2867
2868                                                 mem_node->next = func->mem_head;
2869                                                 func->mem_head = mem_node;
2870                                         } else
2871                                                 return -ENOMEM;
2872                                 } else {
2873                                         /* Reserved bits or requesting space below 1M */
2874                                         return NOT_ENOUGH_RESOURCES;
2875                                 }
2876
2877                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2878
2879                                 /* Check for 64-bit base */
2880                                 if ((temp_register & 0x07L) == 0x04) {
2881                                         cloop += 4;
2882
2883                                         /* Upper 32 bits of address always zero
2884                                          * on today's systems */
2885                                         /* FIXME this is probably not true on
2886                                          * Alpha and ia64??? */
2887                                         base = 0;
2888                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2889                                 }
2890                         }
2891                 }               /* End of base register loop */
2892                 if (cpqhp_legacy_mode) {
2893                         /* Figure out which interrupt pin this function uses */
2894                         rc = pci_bus_read_config_byte (pci_bus, devfn,
2895                                 PCI_INTERRUPT_PIN, &temp_byte);
2896
2897                         /* If this function needs an interrupt and we are behind
2898                          * a bridge and the pin is tied to something that's
2899                          * already mapped, set this one the same */
2900                         if (temp_byte && resources->irqs &&
2901                             (resources->irqs->valid_INT &
2902                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2903                                 /* We have to share with something already set up */
2904                                 IRQ = resources->irqs->interrupt[(temp_byte +
2905                                         resources->irqs->barber_pole - 1) & 0x03];
2906                         } else {
2907                                 /* Program IRQ based on card type */
2908                                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2909
2910                                 if (class_code == PCI_BASE_CLASS_STORAGE)
2911                                         IRQ = cpqhp_disk_irq;
2912                                 else
2913                                         IRQ = cpqhp_nic_irq;
2914                         }
2915
2916                         /* IRQ Line */
2917                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2918                 }
2919
2920                 if (!behind_bridge) {
2921                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2922                         if (rc)
2923                                 return 1;
2924                 } else {
2925                         /* TBD - this code may also belong in the other clause
2926                          * of this If statement */
2927                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2928                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2929                 }
2930
2931                 /* Latency Timer */
2932                 temp_byte = 0x40;
2933                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2934                                         PCI_LATENCY_TIMER, temp_byte);
2935
2936                 /* Cache Line size */
2937                 temp_byte = 0x08;
2938                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2939                                         PCI_CACHE_LINE_SIZE, temp_byte);
2940
2941                 /* disable ROM base Address */
2942                 temp_dword = 0x00L;
2943                 rc = pci_bus_write_config_word(pci_bus, devfn,
2944                                         PCI_ROM_ADDRESS, temp_dword);
2945
2946                 /* enable card */
2947                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2948                                          *   PCI_COMMAND_MEMORY |
2949                                          *   PCI_COMMAND_MASTER |
2950                                          *   PCI_COMMAND_INVALIDATE |
2951                                          *   PCI_COMMAND_PARITY |
2952                                          *   PCI_COMMAND_SERR */
2953                 rc = pci_bus_write_config_word (pci_bus, devfn,
2954                                         PCI_COMMAND, temp_word);
2955         } else {                /* End of Not-A-Bridge else */
2956                 /* It's some strange type of PCI adapter (Cardbus?) */
2957                 return DEVICE_TYPE_NOT_SUPPORTED;
2958         }
2959
2960         func->configured = 1;
2961
2962         return 0;
2963 free_and_out:
2964         cpqhp_destroy_resource_list (&temp_resources);
2965
2966         return_resource(&(resources-> bus_head), hold_bus_node);
2967         return_resource(&(resources-> io_head), hold_IO_node);
2968         return_resource(&(resources-> mem_head), hold_mem_node);
2969         return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2970         return rc;
2971 }