442410cd2ca4b11baaa40039085bbe937344eec5
[kvmfornfv.git] / kernel / drivers / net / ethernet / ethoc.c
1 /*
2  * linux/drivers/net/ethernet/ethoc.c
3  *
4  * Copyright (C) 2007-2008 Avionic Design Development GmbH
5  * Copyright (C) 2008-2009 Avionic Design GmbH
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Written by Thierry Reding <thierry.reding@avionic-design.de>
12  */
13
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/clk.h>
17 #include <linux/crc32.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/mii.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/module.h>
27 #include <net/ethoc.h>
28
29 static int buffer_size = 0x8000; /* 32 KBytes */
30 module_param(buffer_size, int, 0);
31 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
32
33 /* register offsets */
34 #define MODER           0x00
35 #define INT_SOURCE      0x04
36 #define INT_MASK        0x08
37 #define IPGT            0x0c
38 #define IPGR1           0x10
39 #define IPGR2           0x14
40 #define PACKETLEN       0x18
41 #define COLLCONF        0x1c
42 #define TX_BD_NUM       0x20
43 #define CTRLMODER       0x24
44 #define MIIMODER        0x28
45 #define MIICOMMAND      0x2c
46 #define MIIADDRESS      0x30
47 #define MIITX_DATA      0x34
48 #define MIIRX_DATA      0x38
49 #define MIISTATUS       0x3c
50 #define MAC_ADDR0       0x40
51 #define MAC_ADDR1       0x44
52 #define ETH_HASH0       0x48
53 #define ETH_HASH1       0x4c
54 #define ETH_TXCTRL      0x50
55 #define ETH_END         0x54
56
57 /* mode register */
58 #define MODER_RXEN      (1 <<  0) /* receive enable */
59 #define MODER_TXEN      (1 <<  1) /* transmit enable */
60 #define MODER_NOPRE     (1 <<  2) /* no preamble */
61 #define MODER_BRO       (1 <<  3) /* broadcast address */
62 #define MODER_IAM       (1 <<  4) /* individual address mode */
63 #define MODER_PRO       (1 <<  5) /* promiscuous mode */
64 #define MODER_IFG       (1 <<  6) /* interframe gap for incoming frames */
65 #define MODER_LOOP      (1 <<  7) /* loopback */
66 #define MODER_NBO       (1 <<  8) /* no back-off */
67 #define MODER_EDE       (1 <<  9) /* excess defer enable */
68 #define MODER_FULLD     (1 << 10) /* full duplex */
69 #define MODER_RESET     (1 << 11) /* FIXME: reset (undocumented) */
70 #define MODER_DCRC      (1 << 12) /* delayed CRC enable */
71 #define MODER_CRC       (1 << 13) /* CRC enable */
72 #define MODER_HUGE      (1 << 14) /* huge packets enable */
73 #define MODER_PAD       (1 << 15) /* padding enabled */
74 #define MODER_RSM       (1 << 16) /* receive small packets */
75
76 /* interrupt source and mask registers */
77 #define INT_MASK_TXF    (1 << 0) /* transmit frame */
78 #define INT_MASK_TXE    (1 << 1) /* transmit error */
79 #define INT_MASK_RXF    (1 << 2) /* receive frame */
80 #define INT_MASK_RXE    (1 << 3) /* receive error */
81 #define INT_MASK_BUSY   (1 << 4)
82 #define INT_MASK_TXC    (1 << 5) /* transmit control frame */
83 #define INT_MASK_RXC    (1 << 6) /* receive control frame */
84
85 #define INT_MASK_TX     (INT_MASK_TXF | INT_MASK_TXE)
86 #define INT_MASK_RX     (INT_MASK_RXF | INT_MASK_RXE)
87
88 #define INT_MASK_ALL ( \
89                 INT_MASK_TXF | INT_MASK_TXE | \
90                 INT_MASK_RXF | INT_MASK_RXE | \
91                 INT_MASK_TXC | INT_MASK_RXC | \
92                 INT_MASK_BUSY \
93         )
94
95 /* packet length register */
96 #define PACKETLEN_MIN(min)              (((min) & 0xffff) << 16)
97 #define PACKETLEN_MAX(max)              (((max) & 0xffff) <<  0)
98 #define PACKETLEN_MIN_MAX(min, max)     (PACKETLEN_MIN(min) | \
99                                         PACKETLEN_MAX(max))
100
101 /* transmit buffer number register */
102 #define TX_BD_NUM_VAL(x)        (((x) <= 0x80) ? (x) : 0x80)
103
104 /* control module mode register */
105 #define CTRLMODER_PASSALL       (1 << 0) /* pass all receive frames */
106 #define CTRLMODER_RXFLOW        (1 << 1) /* receive control flow */
107 #define CTRLMODER_TXFLOW        (1 << 2) /* transmit control flow */
108
109 /* MII mode register */
110 #define MIIMODER_CLKDIV(x)      ((x) & 0xfe) /* needs to be an even number */
111 #define MIIMODER_NOPRE          (1 << 8) /* no preamble */
112
113 /* MII command register */
114 #define MIICOMMAND_SCAN         (1 << 0) /* scan status */
115 #define MIICOMMAND_READ         (1 << 1) /* read status */
116 #define MIICOMMAND_WRITE        (1 << 2) /* write control data */
117
118 /* MII address register */
119 #define MIIADDRESS_FIAD(x)              (((x) & 0x1f) << 0)
120 #define MIIADDRESS_RGAD(x)              (((x) & 0x1f) << 8)
121 #define MIIADDRESS_ADDR(phy, reg)       (MIIADDRESS_FIAD(phy) | \
122                                         MIIADDRESS_RGAD(reg))
123
124 /* MII transmit data register */
125 #define MIITX_DATA_VAL(x)       ((x) & 0xffff)
126
127 /* MII receive data register */
128 #define MIIRX_DATA_VAL(x)       ((x) & 0xffff)
129
130 /* MII status register */
131 #define MIISTATUS_LINKFAIL      (1 << 0)
132 #define MIISTATUS_BUSY          (1 << 1)
133 #define MIISTATUS_INVALID       (1 << 2)
134
135 /* TX buffer descriptor */
136 #define TX_BD_CS                (1 <<  0) /* carrier sense lost */
137 #define TX_BD_DF                (1 <<  1) /* defer indication */
138 #define TX_BD_LC                (1 <<  2) /* late collision */
139 #define TX_BD_RL                (1 <<  3) /* retransmission limit */
140 #define TX_BD_RETRY_MASK        (0x00f0)
141 #define TX_BD_RETRY(x)          (((x) & 0x00f0) >>  4)
142 #define TX_BD_UR                (1 <<  8) /* transmitter underrun */
143 #define TX_BD_CRC               (1 << 11) /* TX CRC enable */
144 #define TX_BD_PAD               (1 << 12) /* pad enable for short packets */
145 #define TX_BD_WRAP              (1 << 13)
146 #define TX_BD_IRQ               (1 << 14) /* interrupt request enable */
147 #define TX_BD_READY             (1 << 15) /* TX buffer ready */
148 #define TX_BD_LEN(x)            (((x) & 0xffff) << 16)
149 #define TX_BD_LEN_MASK          (0xffff << 16)
150
151 #define TX_BD_STATS             (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
152                                 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
153
154 /* RX buffer descriptor */
155 #define RX_BD_LC        (1 <<  0) /* late collision */
156 #define RX_BD_CRC       (1 <<  1) /* RX CRC error */
157 #define RX_BD_SF        (1 <<  2) /* short frame */
158 #define RX_BD_TL        (1 <<  3) /* too long */
159 #define RX_BD_DN        (1 <<  4) /* dribble nibble */
160 #define RX_BD_IS        (1 <<  5) /* invalid symbol */
161 #define RX_BD_OR        (1 <<  6) /* receiver overrun */
162 #define RX_BD_MISS      (1 <<  7)
163 #define RX_BD_CF        (1 <<  8) /* control frame */
164 #define RX_BD_WRAP      (1 << 13)
165 #define RX_BD_IRQ       (1 << 14) /* interrupt request enable */
166 #define RX_BD_EMPTY     (1 << 15)
167 #define RX_BD_LEN(x)    (((x) & 0xffff) << 16)
168
169 #define RX_BD_STATS     (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
170                         RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
171
172 #define ETHOC_BUFSIZ            1536
173 #define ETHOC_ZLEN              64
174 #define ETHOC_BD_BASE           0x400
175 #define ETHOC_TIMEOUT           (HZ / 2)
176 #define ETHOC_MII_TIMEOUT       (1 + (HZ / 5))
177
178 /**
179  * struct ethoc - driver-private device structure
180  * @iobase:     pointer to I/O memory region
181  * @membase:    pointer to buffer memory region
182  * @dma_alloc:  dma allocated buffer size
183  * @io_region_size:     I/O memory region size
184  * @num_bd:     number of buffer descriptors
185  * @num_tx:     number of send buffers
186  * @cur_tx:     last send buffer written
187  * @dty_tx:     last buffer actually sent
188  * @num_rx:     number of receive buffers
189  * @cur_rx:     current receive buffer
190  * @vma:        pointer to array of virtual memory addresses for buffers
191  * @netdev:     pointer to network device structure
192  * @napi:       NAPI structure
193  * @msg_enable: device state flags
194  * @lock:       device lock
195  * @phy:        attached PHY
196  * @mdio:       MDIO bus for PHY access
197  * @phy_id:     address of attached PHY
198  */
199 struct ethoc {
200         void __iomem *iobase;
201         void __iomem *membase;
202         int dma_alloc;
203         resource_size_t io_region_size;
204
205         unsigned int num_bd;
206         unsigned int num_tx;
207         unsigned int cur_tx;
208         unsigned int dty_tx;
209
210         unsigned int num_rx;
211         unsigned int cur_rx;
212
213         void **vma;
214
215         struct net_device *netdev;
216         struct napi_struct napi;
217         u32 msg_enable;
218
219         spinlock_t lock;
220
221         struct phy_device *phy;
222         struct mii_bus *mdio;
223         struct clk *clk;
224         s8 phy_id;
225 };
226
227 /**
228  * struct ethoc_bd - buffer descriptor
229  * @stat:       buffer statistics
230  * @addr:       physical memory address
231  */
232 struct ethoc_bd {
233         u32 stat;
234         u32 addr;
235 };
236
237 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
238 {
239         return ioread32(dev->iobase + offset);
240 }
241
242 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
243 {
244         iowrite32(data, dev->iobase + offset);
245 }
246
247 static inline void ethoc_read_bd(struct ethoc *dev, int index,
248                 struct ethoc_bd *bd)
249 {
250         loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
251         bd->stat = ethoc_read(dev, offset + 0);
252         bd->addr = ethoc_read(dev, offset + 4);
253 }
254
255 static inline void ethoc_write_bd(struct ethoc *dev, int index,
256                 const struct ethoc_bd *bd)
257 {
258         loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
259         ethoc_write(dev, offset + 0, bd->stat);
260         ethoc_write(dev, offset + 4, bd->addr);
261 }
262
263 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
264 {
265         u32 imask = ethoc_read(dev, INT_MASK);
266         imask |= mask;
267         ethoc_write(dev, INT_MASK, imask);
268 }
269
270 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
271 {
272         u32 imask = ethoc_read(dev, INT_MASK);
273         imask &= ~mask;
274         ethoc_write(dev, INT_MASK, imask);
275 }
276
277 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
278 {
279         ethoc_write(dev, INT_SOURCE, mask);
280 }
281
282 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
283 {
284         u32 mode = ethoc_read(dev, MODER);
285         mode |= MODER_RXEN | MODER_TXEN;
286         ethoc_write(dev, MODER, mode);
287 }
288
289 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
290 {
291         u32 mode = ethoc_read(dev, MODER);
292         mode &= ~(MODER_RXEN | MODER_TXEN);
293         ethoc_write(dev, MODER, mode);
294 }
295
296 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
297 {
298         struct ethoc_bd bd;
299         int i;
300         void *vma;
301
302         dev->cur_tx = 0;
303         dev->dty_tx = 0;
304         dev->cur_rx = 0;
305
306         ethoc_write(dev, TX_BD_NUM, dev->num_tx);
307
308         /* setup transmission buffers */
309         bd.addr = mem_start;
310         bd.stat = TX_BD_IRQ | TX_BD_CRC;
311         vma = dev->membase;
312
313         for (i = 0; i < dev->num_tx; i++) {
314                 if (i == dev->num_tx - 1)
315                         bd.stat |= TX_BD_WRAP;
316
317                 ethoc_write_bd(dev, i, &bd);
318                 bd.addr += ETHOC_BUFSIZ;
319
320                 dev->vma[i] = vma;
321                 vma += ETHOC_BUFSIZ;
322         }
323
324         bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
325
326         for (i = 0; i < dev->num_rx; i++) {
327                 if (i == dev->num_rx - 1)
328                         bd.stat |= RX_BD_WRAP;
329
330                 ethoc_write_bd(dev, dev->num_tx + i, &bd);
331                 bd.addr += ETHOC_BUFSIZ;
332
333                 dev->vma[dev->num_tx + i] = vma;
334                 vma += ETHOC_BUFSIZ;
335         }
336
337         return 0;
338 }
339
340 static int ethoc_reset(struct ethoc *dev)
341 {
342         u32 mode;
343
344         /* TODO: reset controller? */
345
346         ethoc_disable_rx_and_tx(dev);
347
348         /* TODO: setup registers */
349
350         /* enable FCS generation and automatic padding */
351         mode = ethoc_read(dev, MODER);
352         mode |= MODER_CRC | MODER_PAD;
353         ethoc_write(dev, MODER, mode);
354
355         /* set full-duplex mode */
356         mode = ethoc_read(dev, MODER);
357         mode |= MODER_FULLD;
358         ethoc_write(dev, MODER, mode);
359         ethoc_write(dev, IPGT, 0x15);
360
361         ethoc_ack_irq(dev, INT_MASK_ALL);
362         ethoc_enable_irq(dev, INT_MASK_ALL);
363         ethoc_enable_rx_and_tx(dev);
364         return 0;
365 }
366
367 static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
368                 struct ethoc_bd *bd)
369 {
370         struct net_device *netdev = dev->netdev;
371         unsigned int ret = 0;
372
373         if (bd->stat & RX_BD_TL) {
374                 dev_err(&netdev->dev, "RX: frame too long\n");
375                 netdev->stats.rx_length_errors++;
376                 ret++;
377         }
378
379         if (bd->stat & RX_BD_SF) {
380                 dev_err(&netdev->dev, "RX: frame too short\n");
381                 netdev->stats.rx_length_errors++;
382                 ret++;
383         }
384
385         if (bd->stat & RX_BD_DN) {
386                 dev_err(&netdev->dev, "RX: dribble nibble\n");
387                 netdev->stats.rx_frame_errors++;
388         }
389
390         if (bd->stat & RX_BD_CRC) {
391                 dev_err(&netdev->dev, "RX: wrong CRC\n");
392                 netdev->stats.rx_crc_errors++;
393                 ret++;
394         }
395
396         if (bd->stat & RX_BD_OR) {
397                 dev_err(&netdev->dev, "RX: overrun\n");
398                 netdev->stats.rx_over_errors++;
399                 ret++;
400         }
401
402         if (bd->stat & RX_BD_MISS)
403                 netdev->stats.rx_missed_errors++;
404
405         if (bd->stat & RX_BD_LC) {
406                 dev_err(&netdev->dev, "RX: late collision\n");
407                 netdev->stats.collisions++;
408                 ret++;
409         }
410
411         return ret;
412 }
413
414 static int ethoc_rx(struct net_device *dev, int limit)
415 {
416         struct ethoc *priv = netdev_priv(dev);
417         int count;
418
419         for (count = 0; count < limit; ++count) {
420                 unsigned int entry;
421                 struct ethoc_bd bd;
422
423                 entry = priv->num_tx + priv->cur_rx;
424                 ethoc_read_bd(priv, entry, &bd);
425                 if (bd.stat & RX_BD_EMPTY) {
426                         ethoc_ack_irq(priv, INT_MASK_RX);
427                         /* If packet (interrupt) came in between checking
428                          * BD_EMTPY and clearing the interrupt source, then we
429                          * risk missing the packet as the RX interrupt won't
430                          * trigger right away when we reenable it; hence, check
431                          * BD_EMTPY here again to make sure there isn't such a
432                          * packet waiting for us...
433                          */
434                         ethoc_read_bd(priv, entry, &bd);
435                         if (bd.stat & RX_BD_EMPTY)
436                                 break;
437                 }
438
439                 if (ethoc_update_rx_stats(priv, &bd) == 0) {
440                         int size = bd.stat >> 16;
441                         struct sk_buff *skb;
442
443                         size -= 4; /* strip the CRC */
444                         skb = netdev_alloc_skb_ip_align(dev, size);
445
446                         if (likely(skb)) {
447                                 void *src = priv->vma[entry];
448                                 memcpy_fromio(skb_put(skb, size), src, size);
449                                 skb->protocol = eth_type_trans(skb, dev);
450                                 dev->stats.rx_packets++;
451                                 dev->stats.rx_bytes += size;
452                                 netif_receive_skb(skb);
453                         } else {
454                                 if (net_ratelimit())
455                                         dev_warn(&dev->dev,
456                                             "low on memory - packet dropped\n");
457
458                                 dev->stats.rx_dropped++;
459                                 break;
460                         }
461                 }
462
463                 /* clear the buffer descriptor so it can be reused */
464                 bd.stat &= ~RX_BD_STATS;
465                 bd.stat |=  RX_BD_EMPTY;
466                 ethoc_write_bd(priv, entry, &bd);
467                 if (++priv->cur_rx == priv->num_rx)
468                         priv->cur_rx = 0;
469         }
470
471         return count;
472 }
473
474 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
475 {
476         struct net_device *netdev = dev->netdev;
477
478         if (bd->stat & TX_BD_LC) {
479                 dev_err(&netdev->dev, "TX: late collision\n");
480                 netdev->stats.tx_window_errors++;
481         }
482
483         if (bd->stat & TX_BD_RL) {
484                 dev_err(&netdev->dev, "TX: retransmit limit\n");
485                 netdev->stats.tx_aborted_errors++;
486         }
487
488         if (bd->stat & TX_BD_UR) {
489                 dev_err(&netdev->dev, "TX: underrun\n");
490                 netdev->stats.tx_fifo_errors++;
491         }
492
493         if (bd->stat & TX_BD_CS) {
494                 dev_err(&netdev->dev, "TX: carrier sense lost\n");
495                 netdev->stats.tx_carrier_errors++;
496         }
497
498         if (bd->stat & TX_BD_STATS)
499                 netdev->stats.tx_errors++;
500
501         netdev->stats.collisions += (bd->stat >> 4) & 0xf;
502         netdev->stats.tx_bytes += bd->stat >> 16;
503         netdev->stats.tx_packets++;
504 }
505
506 static int ethoc_tx(struct net_device *dev, int limit)
507 {
508         struct ethoc *priv = netdev_priv(dev);
509         int count;
510         struct ethoc_bd bd;
511
512         for (count = 0; count < limit; ++count) {
513                 unsigned int entry;
514
515                 entry = priv->dty_tx & (priv->num_tx-1);
516
517                 ethoc_read_bd(priv, entry, &bd);
518
519                 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) {
520                         ethoc_ack_irq(priv, INT_MASK_TX);
521                         /* If interrupt came in between reading in the BD
522                          * and clearing the interrupt source, then we risk
523                          * missing the event as the TX interrupt won't trigger
524                          * right away when we reenable it; hence, check
525                          * BD_EMPTY here again to make sure there isn't such an
526                          * event pending...
527                          */
528                         ethoc_read_bd(priv, entry, &bd);
529                         if (bd.stat & TX_BD_READY ||
530                             (priv->dty_tx == priv->cur_tx))
531                                 break;
532                 }
533
534                 ethoc_update_tx_stats(priv, &bd);
535                 priv->dty_tx++;
536         }
537
538         if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
539                 netif_wake_queue(dev);
540
541         return count;
542 }
543
544 static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
545 {
546         struct net_device *dev = dev_id;
547         struct ethoc *priv = netdev_priv(dev);
548         u32 pending;
549         u32 mask;
550
551         /* Figure out what triggered the interrupt...
552          * The tricky bit here is that the interrupt source bits get
553          * set in INT_SOURCE for an event regardless of whether that
554          * event is masked or not.  Thus, in order to figure out what
555          * triggered the interrupt, we need to remove the sources
556          * for all events that are currently masked.  This behaviour
557          * is not particularly well documented but reasonable...
558          */
559         mask = ethoc_read(priv, INT_MASK);
560         pending = ethoc_read(priv, INT_SOURCE);
561         pending &= mask;
562
563         if (unlikely(pending == 0))
564                 return IRQ_NONE;
565
566         ethoc_ack_irq(priv, pending);
567
568         /* We always handle the dropped packet interrupt */
569         if (pending & INT_MASK_BUSY) {
570                 dev_err(&dev->dev, "packet dropped\n");
571                 dev->stats.rx_dropped++;
572         }
573
574         /* Handle receive/transmit event by switching to polling */
575         if (pending & (INT_MASK_TX | INT_MASK_RX)) {
576                 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
577                 napi_schedule(&priv->napi);
578         }
579
580         return IRQ_HANDLED;
581 }
582
583 static int ethoc_get_mac_address(struct net_device *dev, void *addr)
584 {
585         struct ethoc *priv = netdev_priv(dev);
586         u8 *mac = (u8 *)addr;
587         u32 reg;
588
589         reg = ethoc_read(priv, MAC_ADDR0);
590         mac[2] = (reg >> 24) & 0xff;
591         mac[3] = (reg >> 16) & 0xff;
592         mac[4] = (reg >>  8) & 0xff;
593         mac[5] = (reg >>  0) & 0xff;
594
595         reg = ethoc_read(priv, MAC_ADDR1);
596         mac[0] = (reg >>  8) & 0xff;
597         mac[1] = (reg >>  0) & 0xff;
598
599         return 0;
600 }
601
602 static int ethoc_poll(struct napi_struct *napi, int budget)
603 {
604         struct ethoc *priv = container_of(napi, struct ethoc, napi);
605         int rx_work_done = 0;
606         int tx_work_done = 0;
607
608         rx_work_done = ethoc_rx(priv->netdev, budget);
609         tx_work_done = ethoc_tx(priv->netdev, budget);
610
611         if (rx_work_done < budget && tx_work_done < budget) {
612                 napi_complete(napi);
613                 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
614         }
615
616         return rx_work_done;
617 }
618
619 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
620 {
621         struct ethoc *priv = bus->priv;
622         int i;
623
624         ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
625         ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
626
627         for (i = 0; i < 5; i++) {
628                 u32 status = ethoc_read(priv, MIISTATUS);
629                 if (!(status & MIISTATUS_BUSY)) {
630                         u32 data = ethoc_read(priv, MIIRX_DATA);
631                         /* reset MII command register */
632                         ethoc_write(priv, MIICOMMAND, 0);
633                         return data;
634                 }
635                 usleep_range(100, 200);
636         }
637
638         return -EBUSY;
639 }
640
641 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
642 {
643         struct ethoc *priv = bus->priv;
644         int i;
645
646         ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
647         ethoc_write(priv, MIITX_DATA, val);
648         ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
649
650         for (i = 0; i < 5; i++) {
651                 u32 stat = ethoc_read(priv, MIISTATUS);
652                 if (!(stat & MIISTATUS_BUSY)) {
653                         /* reset MII command register */
654                         ethoc_write(priv, MIICOMMAND, 0);
655                         return 0;
656                 }
657                 usleep_range(100, 200);
658         }
659
660         return -EBUSY;
661 }
662
663 static void ethoc_mdio_poll(struct net_device *dev)
664 {
665 }
666
667 static int ethoc_mdio_probe(struct net_device *dev)
668 {
669         struct ethoc *priv = netdev_priv(dev);
670         struct phy_device *phy;
671         int err;
672
673         if (priv->phy_id != -1)
674                 phy = priv->mdio->phy_map[priv->phy_id];
675         else
676                 phy = phy_find_first(priv->mdio);
677
678         if (!phy) {
679                 dev_err(&dev->dev, "no PHY found\n");
680                 return -ENXIO;
681         }
682
683         err = phy_connect_direct(dev, phy, ethoc_mdio_poll,
684                                  PHY_INTERFACE_MODE_GMII);
685         if (err) {
686                 dev_err(&dev->dev, "could not attach to PHY\n");
687                 return err;
688         }
689
690         priv->phy = phy;
691         phy->advertising &= ~(ADVERTISED_1000baseT_Full |
692                               ADVERTISED_1000baseT_Half);
693         phy->supported &= ~(SUPPORTED_1000baseT_Full |
694                             SUPPORTED_1000baseT_Half);
695
696         return 0;
697 }
698
699 static int ethoc_open(struct net_device *dev)
700 {
701         struct ethoc *priv = netdev_priv(dev);
702         int ret;
703
704         ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
705                         dev->name, dev);
706         if (ret)
707                 return ret;
708
709         ethoc_init_ring(priv, dev->mem_start);
710         ethoc_reset(priv);
711
712         if (netif_queue_stopped(dev)) {
713                 dev_dbg(&dev->dev, " resuming queue\n");
714                 netif_wake_queue(dev);
715         } else {
716                 dev_dbg(&dev->dev, " starting queue\n");
717                 netif_start_queue(dev);
718         }
719
720         phy_start(priv->phy);
721         napi_enable(&priv->napi);
722
723         if (netif_msg_ifup(priv)) {
724                 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
725                                 dev->base_addr, dev->mem_start, dev->mem_end);
726         }
727
728         return 0;
729 }
730
731 static int ethoc_stop(struct net_device *dev)
732 {
733         struct ethoc *priv = netdev_priv(dev);
734
735         napi_disable(&priv->napi);
736
737         if (priv->phy)
738                 phy_stop(priv->phy);
739
740         ethoc_disable_rx_and_tx(priv);
741         free_irq(dev->irq, dev);
742
743         if (!netif_queue_stopped(dev))
744                 netif_stop_queue(dev);
745
746         return 0;
747 }
748
749 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
750 {
751         struct ethoc *priv = netdev_priv(dev);
752         struct mii_ioctl_data *mdio = if_mii(ifr);
753         struct phy_device *phy = NULL;
754
755         if (!netif_running(dev))
756                 return -EINVAL;
757
758         if (cmd != SIOCGMIIPHY) {
759                 if (mdio->phy_id >= PHY_MAX_ADDR)
760                         return -ERANGE;
761
762                 phy = priv->mdio->phy_map[mdio->phy_id];
763                 if (!phy)
764                         return -ENODEV;
765         } else {
766                 phy = priv->phy;
767         }
768
769         return phy_mii_ioctl(phy, ifr, cmd);
770 }
771
772 static void ethoc_do_set_mac_address(struct net_device *dev)
773 {
774         struct ethoc *priv = netdev_priv(dev);
775         unsigned char *mac = dev->dev_addr;
776
777         ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
778                                      (mac[4] <<  8) | (mac[5] <<  0));
779         ethoc_write(priv, MAC_ADDR1, (mac[0] <<  8) | (mac[1] <<  0));
780 }
781
782 static int ethoc_set_mac_address(struct net_device *dev, void *p)
783 {
784         const struct sockaddr *addr = p;
785
786         if (!is_valid_ether_addr(addr->sa_data))
787                 return -EADDRNOTAVAIL;
788         memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
789         ethoc_do_set_mac_address(dev);
790         return 0;
791 }
792
793 static void ethoc_set_multicast_list(struct net_device *dev)
794 {
795         struct ethoc *priv = netdev_priv(dev);
796         u32 mode = ethoc_read(priv, MODER);
797         struct netdev_hw_addr *ha;
798         u32 hash[2] = { 0, 0 };
799
800         /* set loopback mode if requested */
801         if (dev->flags & IFF_LOOPBACK)
802                 mode |=  MODER_LOOP;
803         else
804                 mode &= ~MODER_LOOP;
805
806         /* receive broadcast frames if requested */
807         if (dev->flags & IFF_BROADCAST)
808                 mode &= ~MODER_BRO;
809         else
810                 mode |=  MODER_BRO;
811
812         /* enable promiscuous mode if requested */
813         if (dev->flags & IFF_PROMISC)
814                 mode |=  MODER_PRO;
815         else
816                 mode &= ~MODER_PRO;
817
818         ethoc_write(priv, MODER, mode);
819
820         /* receive multicast frames */
821         if (dev->flags & IFF_ALLMULTI) {
822                 hash[0] = 0xffffffff;
823                 hash[1] = 0xffffffff;
824         } else {
825                 netdev_for_each_mc_addr(ha, dev) {
826                         u32 crc = ether_crc(ETH_ALEN, ha->addr);
827                         int bit = (crc >> 26) & 0x3f;
828                         hash[bit >> 5] |= 1 << (bit & 0x1f);
829                 }
830         }
831
832         ethoc_write(priv, ETH_HASH0, hash[0]);
833         ethoc_write(priv, ETH_HASH1, hash[1]);
834 }
835
836 static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
837 {
838         return -ENOSYS;
839 }
840
841 static void ethoc_tx_timeout(struct net_device *dev)
842 {
843         struct ethoc *priv = netdev_priv(dev);
844         u32 pending = ethoc_read(priv, INT_SOURCE);
845         if (likely(pending))
846                 ethoc_interrupt(dev->irq, dev);
847 }
848
849 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
850 {
851         struct ethoc *priv = netdev_priv(dev);
852         struct ethoc_bd bd;
853         unsigned int entry;
854         void *dest;
855
856         if (unlikely(skb->len > ETHOC_BUFSIZ)) {
857                 dev->stats.tx_errors++;
858                 goto out;
859         }
860
861         entry = priv->cur_tx % priv->num_tx;
862         spin_lock_irq(&priv->lock);
863         priv->cur_tx++;
864
865         ethoc_read_bd(priv, entry, &bd);
866         if (unlikely(skb->len < ETHOC_ZLEN))
867                 bd.stat |=  TX_BD_PAD;
868         else
869                 bd.stat &= ~TX_BD_PAD;
870
871         dest = priv->vma[entry];
872         memcpy_toio(dest, skb->data, skb->len);
873
874         bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
875         bd.stat |= TX_BD_LEN(skb->len);
876         ethoc_write_bd(priv, entry, &bd);
877
878         bd.stat |= TX_BD_READY;
879         ethoc_write_bd(priv, entry, &bd);
880
881         if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
882                 dev_dbg(&dev->dev, "stopping queue\n");
883                 netif_stop_queue(dev);
884         }
885
886         spin_unlock_irq(&priv->lock);
887         skb_tx_timestamp(skb);
888 out:
889         dev_kfree_skb(skb);
890         return NETDEV_TX_OK;
891 }
892
893 static int ethoc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
894 {
895         struct ethoc *priv = netdev_priv(dev);
896         struct phy_device *phydev = priv->phy;
897
898         if (!phydev)
899                 return -EOPNOTSUPP;
900
901         return phy_ethtool_gset(phydev, cmd);
902 }
903
904 static int ethoc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
905 {
906         struct ethoc *priv = netdev_priv(dev);
907         struct phy_device *phydev = priv->phy;
908
909         if (!phydev)
910                 return -EOPNOTSUPP;
911
912         return phy_ethtool_sset(phydev, cmd);
913 }
914
915 static int ethoc_get_regs_len(struct net_device *netdev)
916 {
917         return ETH_END;
918 }
919
920 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs,
921                            void *p)
922 {
923         struct ethoc *priv = netdev_priv(dev);
924         u32 *regs_buff = p;
925         unsigned i;
926
927         regs->version = 0;
928         for (i = 0; i < ETH_END / sizeof(u32); ++i)
929                 regs_buff[i] = ethoc_read(priv, i * sizeof(u32));
930 }
931
932 static void ethoc_get_ringparam(struct net_device *dev,
933                                 struct ethtool_ringparam *ring)
934 {
935         struct ethoc *priv = netdev_priv(dev);
936
937         ring->rx_max_pending = priv->num_bd - 1;
938         ring->rx_mini_max_pending = 0;
939         ring->rx_jumbo_max_pending = 0;
940         ring->tx_max_pending = priv->num_bd - 1;
941
942         ring->rx_pending = priv->num_rx;
943         ring->rx_mini_pending = 0;
944         ring->rx_jumbo_pending = 0;
945         ring->tx_pending = priv->num_tx;
946 }
947
948 static int ethoc_set_ringparam(struct net_device *dev,
949                                struct ethtool_ringparam *ring)
950 {
951         struct ethoc *priv = netdev_priv(dev);
952
953         if (ring->tx_pending < 1 || ring->rx_pending < 1 ||
954             ring->tx_pending + ring->rx_pending > priv->num_bd)
955                 return -EINVAL;
956         if (ring->rx_mini_pending || ring->rx_jumbo_pending)
957                 return -EINVAL;
958
959         if (netif_running(dev)) {
960                 netif_tx_disable(dev);
961                 ethoc_disable_rx_and_tx(priv);
962                 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
963                 synchronize_irq(dev->irq);
964         }
965
966         priv->num_tx = rounddown_pow_of_two(ring->tx_pending);
967         priv->num_rx = ring->rx_pending;
968         ethoc_init_ring(priv, dev->mem_start);
969
970         if (netif_running(dev)) {
971                 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
972                 ethoc_enable_rx_and_tx(priv);
973                 netif_wake_queue(dev);
974         }
975         return 0;
976 }
977
978 const struct ethtool_ops ethoc_ethtool_ops = {
979         .get_settings = ethoc_get_settings,
980         .set_settings = ethoc_set_settings,
981         .get_regs_len = ethoc_get_regs_len,
982         .get_regs = ethoc_get_regs,
983         .get_link = ethtool_op_get_link,
984         .get_ringparam = ethoc_get_ringparam,
985         .set_ringparam = ethoc_set_ringparam,
986         .get_ts_info = ethtool_op_get_ts_info,
987 };
988
989 static const struct net_device_ops ethoc_netdev_ops = {
990         .ndo_open = ethoc_open,
991         .ndo_stop = ethoc_stop,
992         .ndo_do_ioctl = ethoc_ioctl,
993         .ndo_set_mac_address = ethoc_set_mac_address,
994         .ndo_set_rx_mode = ethoc_set_multicast_list,
995         .ndo_change_mtu = ethoc_change_mtu,
996         .ndo_tx_timeout = ethoc_tx_timeout,
997         .ndo_start_xmit = ethoc_start_xmit,
998 };
999
1000 /**
1001  * ethoc_probe - initialize OpenCores ethernet MAC
1002  * pdev:        platform device
1003  */
1004 static int ethoc_probe(struct platform_device *pdev)
1005 {
1006         struct net_device *netdev = NULL;
1007         struct resource *res = NULL;
1008         struct resource *mmio = NULL;
1009         struct resource *mem = NULL;
1010         struct ethoc *priv = NULL;
1011         unsigned int phy;
1012         int num_bd;
1013         int ret = 0;
1014         bool random_mac = false;
1015         struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev);
1016         u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0;
1017
1018         /* allocate networking device */
1019         netdev = alloc_etherdev(sizeof(struct ethoc));
1020         if (!netdev) {
1021                 ret = -ENOMEM;
1022                 goto out;
1023         }
1024
1025         SET_NETDEV_DEV(netdev, &pdev->dev);
1026         platform_set_drvdata(pdev, netdev);
1027
1028         /* obtain I/O memory space */
1029         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1030         if (!res) {
1031                 dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
1032                 ret = -ENXIO;
1033                 goto free;
1034         }
1035
1036         mmio = devm_request_mem_region(&pdev->dev, res->start,
1037                         resource_size(res), res->name);
1038         if (!mmio) {
1039                 dev_err(&pdev->dev, "cannot request I/O memory space\n");
1040                 ret = -ENXIO;
1041                 goto free;
1042         }
1043
1044         netdev->base_addr = mmio->start;
1045
1046         /* obtain buffer memory space */
1047         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1048         if (res) {
1049                 mem = devm_request_mem_region(&pdev->dev, res->start,
1050                         resource_size(res), res->name);
1051                 if (!mem) {
1052                         dev_err(&pdev->dev, "cannot request memory space\n");
1053                         ret = -ENXIO;
1054                         goto free;
1055                 }
1056
1057                 netdev->mem_start = mem->start;
1058                 netdev->mem_end   = mem->end;
1059         }
1060
1061
1062         /* obtain device IRQ number */
1063         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1064         if (!res) {
1065                 dev_err(&pdev->dev, "cannot obtain IRQ\n");
1066                 ret = -ENXIO;
1067                 goto free;
1068         }
1069
1070         netdev->irq = res->start;
1071
1072         /* setup driver-private data */
1073         priv = netdev_priv(netdev);
1074         priv->netdev = netdev;
1075         priv->dma_alloc = 0;
1076         priv->io_region_size = resource_size(mmio);
1077
1078         priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr,
1079                         resource_size(mmio));
1080         if (!priv->iobase) {
1081                 dev_err(&pdev->dev, "cannot remap I/O memory space\n");
1082                 ret = -ENXIO;
1083                 goto error;
1084         }
1085
1086         if (netdev->mem_end) {
1087                 priv->membase = devm_ioremap_nocache(&pdev->dev,
1088                         netdev->mem_start, resource_size(mem));
1089                 if (!priv->membase) {
1090                         dev_err(&pdev->dev, "cannot remap memory space\n");
1091                         ret = -ENXIO;
1092                         goto error;
1093                 }
1094         } else {
1095                 /* Allocate buffer memory */
1096                 priv->membase = dmam_alloc_coherent(&pdev->dev,
1097                         buffer_size, (void *)&netdev->mem_start,
1098                         GFP_KERNEL);
1099                 if (!priv->membase) {
1100                         dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
1101                                 buffer_size);
1102                         ret = -ENOMEM;
1103                         goto error;
1104                 }
1105                 netdev->mem_end = netdev->mem_start + buffer_size;
1106                 priv->dma_alloc = buffer_size;
1107         }
1108
1109         /* calculate the number of TX/RX buffers, maximum 128 supported */
1110         num_bd = min_t(unsigned int,
1111                 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
1112         if (num_bd < 4) {
1113                 ret = -ENODEV;
1114                 goto error;
1115         }
1116         priv->num_bd = num_bd;
1117         /* num_tx must be a power of two */
1118         priv->num_tx = rounddown_pow_of_two(num_bd >> 1);
1119         priv->num_rx = num_bd - priv->num_tx;
1120
1121         dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n",
1122                 priv->num_tx, priv->num_rx);
1123
1124         priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL);
1125         if (!priv->vma) {
1126                 ret = -ENOMEM;
1127                 goto error;
1128         }
1129
1130         /* Allow the platform setup code to pass in a MAC address. */
1131         if (pdata) {
1132                 memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN);
1133                 priv->phy_id = pdata->phy_id;
1134         } else {
1135                 priv->phy_id = -1;
1136
1137 #ifdef CONFIG_OF
1138                 {
1139                 const uint8_t *mac;
1140
1141                 mac = of_get_property(pdev->dev.of_node,
1142                                       "local-mac-address",
1143                                       NULL);
1144                 if (mac)
1145                         memcpy(netdev->dev_addr, mac, IFHWADDRLEN);
1146                 }
1147 #endif
1148         }
1149
1150         /* Check that the given MAC address is valid. If it isn't, read the
1151          * current MAC from the controller.
1152          */
1153         if (!is_valid_ether_addr(netdev->dev_addr))
1154                 ethoc_get_mac_address(netdev, netdev->dev_addr);
1155
1156         /* Check the MAC again for validity, if it still isn't choose and
1157          * program a random one.
1158          */
1159         if (!is_valid_ether_addr(netdev->dev_addr)) {
1160                 eth_random_addr(netdev->dev_addr);
1161                 random_mac = true;
1162         }
1163
1164         ethoc_do_set_mac_address(netdev);
1165
1166         if (random_mac)
1167                 netdev->addr_assign_type = NET_ADDR_RANDOM;
1168
1169         /* Allow the platform setup code to adjust MII management bus clock. */
1170         if (!eth_clkfreq) {
1171                 struct clk *clk = devm_clk_get(&pdev->dev, NULL);
1172
1173                 if (!IS_ERR(clk)) {
1174                         priv->clk = clk;
1175                         clk_prepare_enable(clk);
1176                         eth_clkfreq = clk_get_rate(clk);
1177                 }
1178         }
1179         if (eth_clkfreq) {
1180                 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1);
1181
1182                 if (!clkdiv)
1183                         clkdiv = 2;
1184                 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv);
1185                 ethoc_write(priv, MIIMODER,
1186                             (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) |
1187                             clkdiv);
1188         }
1189
1190         /* register MII bus */
1191         priv->mdio = mdiobus_alloc();
1192         if (!priv->mdio) {
1193                 ret = -ENOMEM;
1194                 goto free;
1195         }
1196
1197         priv->mdio->name = "ethoc-mdio";
1198         snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
1199                         priv->mdio->name, pdev->id);
1200         priv->mdio->read = ethoc_mdio_read;
1201         priv->mdio->write = ethoc_mdio_write;
1202         priv->mdio->priv = priv;
1203
1204         priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1205         if (!priv->mdio->irq) {
1206                 ret = -ENOMEM;
1207                 goto free_mdio;
1208         }
1209
1210         for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1211                 priv->mdio->irq[phy] = PHY_POLL;
1212
1213         ret = mdiobus_register(priv->mdio);
1214         if (ret) {
1215                 dev_err(&netdev->dev, "failed to register MDIO bus\n");
1216                 goto free_mdio;
1217         }
1218
1219         ret = ethoc_mdio_probe(netdev);
1220         if (ret) {
1221                 dev_err(&netdev->dev, "failed to probe MDIO bus\n");
1222                 goto error;
1223         }
1224
1225         /* setup the net_device structure */
1226         netdev->netdev_ops = &ethoc_netdev_ops;
1227         netdev->watchdog_timeo = ETHOC_TIMEOUT;
1228         netdev->features |= 0;
1229         netdev->ethtool_ops = &ethoc_ethtool_ops;
1230
1231         /* setup NAPI */
1232         netif_napi_add(netdev, &priv->napi, ethoc_poll, 64);
1233
1234         spin_lock_init(&priv->lock);
1235
1236         ret = register_netdev(netdev);
1237         if (ret < 0) {
1238                 dev_err(&netdev->dev, "failed to register interface\n");
1239                 goto error2;
1240         }
1241
1242         goto out;
1243
1244 error2:
1245         netif_napi_del(&priv->napi);
1246 error:
1247         mdiobus_unregister(priv->mdio);
1248 free_mdio:
1249         kfree(priv->mdio->irq);
1250         mdiobus_free(priv->mdio);
1251 free:
1252         if (priv->clk)
1253                 clk_disable_unprepare(priv->clk);
1254         free_netdev(netdev);
1255 out:
1256         return ret;
1257 }
1258
1259 /**
1260  * ethoc_remove - shutdown OpenCores ethernet MAC
1261  * @pdev:       platform device
1262  */
1263 static int ethoc_remove(struct platform_device *pdev)
1264 {
1265         struct net_device *netdev = platform_get_drvdata(pdev);
1266         struct ethoc *priv = netdev_priv(netdev);
1267
1268         if (netdev) {
1269                 netif_napi_del(&priv->napi);
1270                 phy_disconnect(priv->phy);
1271                 priv->phy = NULL;
1272
1273                 if (priv->mdio) {
1274                         mdiobus_unregister(priv->mdio);
1275                         kfree(priv->mdio->irq);
1276                         mdiobus_free(priv->mdio);
1277                 }
1278                 if (priv->clk)
1279                         clk_disable_unprepare(priv->clk);
1280                 unregister_netdev(netdev);
1281                 free_netdev(netdev);
1282         }
1283
1284         return 0;
1285 }
1286
1287 #ifdef CONFIG_PM
1288 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
1289 {
1290         return -ENOSYS;
1291 }
1292
1293 static int ethoc_resume(struct platform_device *pdev)
1294 {
1295         return -ENOSYS;
1296 }
1297 #else
1298 # define ethoc_suspend NULL
1299 # define ethoc_resume  NULL
1300 #endif
1301
1302 static const struct of_device_id ethoc_match[] = {
1303         { .compatible = "opencores,ethoc", },
1304         {},
1305 };
1306 MODULE_DEVICE_TABLE(of, ethoc_match);
1307
1308 static struct platform_driver ethoc_driver = {
1309         .probe   = ethoc_probe,
1310         .remove  = ethoc_remove,
1311         .suspend = ethoc_suspend,
1312         .resume  = ethoc_resume,
1313         .driver  = {
1314                 .name = "ethoc",
1315                 .of_match_table = ethoc_match,
1316         },
1317 };
1318
1319 module_platform_driver(ethoc_driver);
1320
1321 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
1322 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
1323 MODULE_LICENSE("GPL v2");
1324