Removal of the rememberance of Al
[opnfvdocs.git] / docs / release / overview.rst
1 .. _opnfv-overview:
2
3 .. This work is licensed under a Creative Commons Attribution 4.0 International License.
4 .. SPDX-License-Identifier: CC-BY-4.0
5 .. (c) Open Platform for NFV Project, Inc. and its contributors
6
7 ================
8 Platform overview
9 ================
10
11 Introduction
12 ============
13
14 Network Functions Virtualization (NFV) is transforming the networking industry via
15 software-defined infrastructures and open source is the proven method for quickly developing
16 software for commercial products and services that can move markets.
17 Open Platform for NFV (OPNFV) facilitates the development and evolution of NFV
18 components across various open source ecosystems. Through system level integration,
19 deployment and testing, OPNFV constructs a reference NFV platform to accelerate the
20 transformation of enterprise and service provider networks.
21 As an open source project, OPNFV is uniquely positioned to bring together the work
22 of standards bodies, open source communities, service providers and commercial suppliers to deliver
23 a de facto NFV platform for the industry.
24
25 By integrating components from upstream projects, the community is able to conduct performance
26 and use case-based testing on a variety of solutions to ensure the platform’s suitability for
27 NFV use cases. OPNFV also works upstream with other open source communities to bring contributions
28 and learnings from its work directly to those communities in the form of blueprints, patches, bugs,
29 and new code.
30
31 OPNFV initially focused on building NFV Infrastructure (NFVI) and Virtualised Infrastructure
32 Management (VIM) by integrating components from upstream projects such as OpenDaylight,
33 OpenStack, Ceph Storage, KVM, Open vSwitch, and Linux.
34 More recently, OPNFV has extended its portfolio of forwarding solutions to include fd.io and ODP,
35 is able to run on both Intel and ARM commercial and white-box hardware, support VM, Container and
36 BareMetal workloads, and includes Management and Network Orchestration MANO components primarily
37 for application composition and management in the Danube release.
38
39 These capabilities, along with application programmable interfaces (APIs) to other NFV
40 elements, form the basic infrastructure required for Virtualized Network Functions (VNF)
41 and MANO components.
42
43 Concentrating on these components while also considering proposed projects on additional
44 topics (such as the MANO components and applications themselves), OPNFV aims to enhance
45 NFV services by increasing performance and power efficiency improving reliability,
46 availability and serviceability, and delivering comprehensive platform instrumentation.
47
48
49 OPNFV Platform Architecture
50 ===========================
51
52 The OPNFV project addresses a number of aspects in the development of a consistent virtualisation
53 platform including common hardware requirements, software architecture, MANO and applications.
54
55
56 OPNFV Platform Overview Diagram
57
58 .. image:: ../images/opnfvplatformgraphic.png
59    :alt: Overview infographic of the opnfv platform and projects.
60
61
62 To address these areas effectively, the OPNFV platform architecture can be decomposed
63 into the following basic building blocks:
64
65 * Hardware: with the Infra working group, Pharos project and associated activities
66 * Software Platform: through the platform integration and deployment projects
67 * MANO: through the MANO working group and associated projects
68 * Applications: which affect all other areas and drive requirements for OPNFV
69
70 OPNFV Lab Infrastructure
71 ========================
72
73 The infrastructure working group oversees such topics as lab management, workflow,
74 definitions, metrics and tools for OPNFV infrastructure.
75
76 Fundamental to the WG is the
77 `Pharos Specification <https://wiki.opnfv.org/display/pharos/Pharos+Specification>`_
78 which provides a set of defined lab infrastructures over a geographically and technically
79 diverse federated global OPNFV lab.
80
81 Labs may instantiate bare-metal and virtual environments that are accessed remotely by the
82 community and used for OPNFV platform and feature development, build, deploy and testing.
83 No two labs are the same and the heterogeneity of the Pharos environment provides the ideal
84 platform for establishing hardware and software abstractions providing well understood
85 performance characteristics.
86
87 Community labs are hosted by OPNFV member companies on a voluntary basis.
88 The Linux Foundation also hosts an OPNFV lab that provides centralized CI
89 and other production resources which are linked to community labs.
90 Future lab capabilities will include the ability easily automate deploy and test of any
91 OPNFV install scenario in any lab environment as well as on a nested "lab as a service"
92 virtual infrastructure.
93
94 OPNFV Software Platform Architecture
95 ====================================
96
97 The OPNFV software platform is comprised exclusively of open source implementations of
98 platform component pieces.  OPNFV is able to draw from the rich ecosystem of NFV related
99 technologies available in open-source then integrate, test, measure and improve these
100 components in conjunction with our source communities.
101
102 While the composition of the OPNFV software platform is highly complex and constituted of many
103 projects and components, a subset of these projects gain the most attention from the OPNFV community
104 to drive the development of new technologies and capabilities.
105
106 ---------------------------------
107 Virtual Infrastructure Management
108 ---------------------------------
109
110 OPNFV derives it's virtual infrastructure management from one of our largest upstream ecosystems
111 OpenStack.  OpenStack provides a complete reference cloud management system and associated technologies.
112 While the OpenStack community sustains a broad set of projects, not all technologies are relevant in
113 an NFV domain, the OPNFV community consumes a sub-set of OpenStack projects where the usage and
114 composition may vary depending on the installer and scenario.
115
116 For details on the scenarios available in OPNFV and the specific composition of components
117 refer to the :ref:`OPNFV User Guide & Configuration Guide <opnfv-user-config>`
118
119 -----------------
120 Operating Systems
121 -----------------
122
123 OPNFV currently uses Linux on all target machines, this can include Ubuntu, Centos or SUSE linux. The
124 specific version of Linux used for any deployment is documented in the installation guide.
125
126 -----------------------
127 Networking Technologies
128 -----------------------
129
130 SDN Controllers
131 ---------------
132
133 OPNFV, as an NFV focused project, has a significant investment on networking technologies
134 and provides a broad variety of integrated open source reference solutions.  The diversity
135 of controllers able to be used in OPNFV is supported by a similarly diverse set of
136 forwarding technologies.
137
138 There are many SDN controllers available today relevant to virtual environments
139 where the OPNFV community supports and contributes to a number of these.  The controllers
140 being worked on by the community during this release of OPNFV include:
141
142 * Neutron: an OpenStack project to provide “network connectivity as a service” between
143   interface devices (e.g., vNICs) managed by other OpenStack services (e.g., nova).
144 * OpenDaylight: addresses multivendor, traditional and greenfield networks, establishing the
145   industry’s de facto SDN platform and providing the foundation for networks of the future.
146 * ONOS: a carrier-grade SDN network operating system designed for high availability,
147   performance, scale-out.
148
149 .. OpenContrail SDN controller is planned to be supported in the next release.
150
151 Data Plane
152 ----------
153
154 OPNFV extends Linux virtual networking capabilities by using virtual switching
155 and routing components. The OPNFV community proactively engages with these source
156 communities to address performance, scale and resiliency needs apparent in carrier
157 networks.
158
159 * FD.io (Fast data - Input/Output): a collection of several projects and libraries to
160   amplify the transformation that began with Data Plane Development Kit (DPDK) to support
161   flexible, programmable and composable services on a generic hardware platform.
162 * Open vSwitch: a production quality, multilayer virtual switch designed to enable
163   massive network automation through programmatic extension, while still supporting standard
164   management interfaces and protocols.
165
166 Deployment Architecture
167 =======================
168
169 A typical OPNFV deployment starts with three controller nodes running in a high availability
170 configuration including control plane components from OpenStack, SDN, etc. and a minimum
171 of two compute nodes for deployment of workloads (VNFs).
172 A detailed description of the hardware requirements required to support the 5 node configuration
173 can be found in pharos specification: `Pharos Project <https://www.opnfv.org/developers/pharos>`_
174
175 In addition to the deployment on a highly available physical infrastructure, OPNFV can be
176 deployed for development and lab purposes in a virtual environment.  In this case each of the hosts
177 is provided by a virtual machine and allows control and workload placement using nested virtualization.
178
179 The initial deployment is done using a staging server, referred to as the "jumphost".
180 This server-either physical or virtual-is first installed with the installation program
181 that then installs OpenStack and other components on the controller nodes and compute nodes.
182 See the :ref:`OPNFV User Guide & Configuration Guide <opnfv-user-config>` for more details.
183
184
185 The OPNFV Testing Ecosystem
186 ===========================
187
188 The OPNFV community has set out to address the needs of virtualization in the carrier
189 network and as such platform validation and measurements are a cornerstone to the
190 iterative releases and objectives.
191
192 To simplify the complex task of feature, component and platform validation and characterization
193 the testing community has established a fully automated method for addressing all key areas of
194 platform validation. This required the integration of a variety of testing frameworks in our CI
195 systems, real time and automated analysis of results, storage and publication of key facts for
196 each run as shown in the following diagram.
197
198 .. image:: ../images/OPNFV_testing_working_group.png
199   :alt: Overview infographic of the OPNFV testing Ecosystem
200
201 Release Verification
202 ====================
203
204 The OPNFV community relies on its testing community to establish release criteria for each OPNFV
205 release. Each release cycle the testing criteria become more stringent and better representative
206 of our feature and resiliency requirements.
207
208
209 As each OPNFV release establishes a set of deployment scenarios to validate, the testing
210 infrastructure and test suites need to accommodate these features and capabilities. It’s not
211 only in the validation of the scenarios themselves where complexity increases, there are test
212 cases that require multiple datacenters to execute when evaluating features, including multisite
213 and distributed datacenter solutions.
214
215 The release criteria as established by the testing teams include passing a set of test cases
216 derived from the functional testing project ‘functest,’ a set of test cases derived from our
217 platform system and performance test project ‘yardstick,’ and a selection of test cases for
218 feature capabilities derived from other test projects such as bottlenecks, vsperf, cperf and
219 storperf. The scenario needs to be able to be deployed, pass these tests, and be removed from
220 the infrastructure iteratively (no less that 4 times) in order to fulfil the release criteria.
221
222 --------
223 Functest
224 --------
225
226 Functest provides a functional testing framework incorporating a number of test suites
227 and test cases that test and verify OPNFV platform functionality.
228 The scope of Functest and relevant test cases can be found in the :ref:`Functest User Guide <functest-userguide>`
229
230 Functest provides both feature project and component test suite integration, leveraging
231 OpenStack and SDN controllers testing frameworks to verify the key components of the OPNFV
232 platform are running successfully.
233
234 ---------
235 Yardstick
236 ---------
237
238 Yardstick is a testing project for verifying the infrastructure compliance when running VNF applications.
239 Yardstick benchmarks a number of characteristics and performance vectors on the infrastructure making it
240 a valuable pre-deployment NFVI testing tools.
241
242 Yardstick provides a flexible testing framework for launching other OPNFV testing projects.
243
244 There are two types of test cases in Yardstick:
245
246 * Yardstick generic test cases and OPNFV feature test cases;
247   including basic characteristics benchmarking in compute/storage/network area.
248 * OPNFV feature test cases include basic telecom feature testing from OPNFV projects;
249   for example nfv-kvm, sfc, ipv6, Parser, Availability and SDN VPN
250
251 System Evaluation and compliance testing
252 ========================================
253
254 The OPNFV community is developing a set of test suites intended to evaluate a set of reference
255 behaviors and capabilities for NFV systems developed externally from the OPNFV ecosystem to
256 evaluate and measure their ability to provide the features and capabilities developed in the
257 OPNFV ecosystem.
258
259 The Dovetail project will provide a test framework and methodology able to be used on any NFV platform,
260 including an agreed set of test cases establishing an evaluation criteria for exercising
261 an OPNFV compatible system. The Dovetail project has begun establishing the test framework
262 and will provide a preliminary methodology for the Danube release. Work will continue to
263 develop these test cases to establish a stand alone compliance evaluation solution
264 in future releases.
265
266 Additional Testing
267 ==================
268
269 Besides the test suites and cases for release verification, additional testing is performed to validate
270 specific features or characteristics of the OPNFV platform.
271 These testing framework and test cases may include some specific needs; such as extended measurements,
272 additional testing stimuli, or tests simulating environmental disturbances or failures.
273
274 These additional testing activities provide a more complete evaluation of the OPNFV platform.
275 Some of the projects focused on these testing areas include:
276
277 ------
278 VSPERF
279 ------
280
281 VSPERF provides an automated test-framework and comprehensive test suite for measuring data-plane
282 performance of the NFVI including switching technology, physical and virtual network interfaces.
283 The provided test cases with network topologies can be customized while also allowing individual
284 versions of Operating System, vSwitch and hypervisor to be specified.
285
286 -----------
287 Bottlenecks
288 -----------
289
290 Bottlenecks provides a framework to find system limitations and bottlenecks, providing
291 root cause isolation capabilities to facilitate system evaluation.
292
293
294 .. _`OPNFV Configuration Guide`: `OPNFV User Guide & Configuration Guide`
295 .. _`OPNFV User Guide`: `OPNFV User Guide & Configuration Guide`
296 .. _`Dovetail project`: https://wiki.opnfv.org/display/dovetail